Ionic solids dissociates into ions and molecular solids just disintegrate.
Ionic compounds have higher melting and boiling points than molecular compounds due to the strong electrostatic forces between ions. Ionic compounds are usually solid at room temperature, while molecular compounds can be solid, liquid, or gas. Ionic compounds conduct electricity when dissolved in water, while molecular compounds do not.
Molecular compounds are formed by sharing of electrons between atoms, resulting in covalent bonds, while ionic compounds are formed by transferring electrons from one atom to another, resulting in ionic bonds. Molecular compounds have discrete molecules with defined molecular formulas, while ionic compounds do not have discrete molecules and are represented by empirical formulas showing the ratio of ions present in the compound.
Ionic compounds tend to have higher melting and boiling points compared to molecular compounds. This is because ionic bonds are generally stronger than the intermolecular forces present in molecular compounds, such as van der Waals forces. The strong electrostatic forces between ions in an ionic compound require more energy to overcome, leading to higher melting and boiling points.
Many ionic compounds exist as crystals but covalent compounds as molecules (there are exceptions as diamond though). Ionic compounds would be good electrical conductors unlike molecular compounds.
Ionic compounds typically have higher conductivity than molecular compounds because ionic compounds dissociate into ions in solution, allowing for the flow of electric current. Molecular compounds, on the other hand, do not dissociate into ions in solution and therefore exhibit lower conductivity.
Aqueous solutions of ionic compounds consist of ions dissolved in water, while solutions of molecular compounds consist of intact molecules dispersed in water. Ionic compounds dissociate into ions in water, leading to electrolytic behavior, while molecular compounds usually do not conduct electricity in solution unless they ionize.
Aqueous [note spelling] solutions of ionic compounds conduct electricity, but aqueous solutions of molecular compounds do not, unless the molecular compounds dissociate into ions when dissolved. Sugar, acetone, ethanol, and methanol, for example, do not dissociate, but acetic acid does.
Ionic compounds have higher melting and boiling points than molecular compounds due to the strong electrostatic forces between ions. Ionic compounds are usually solid at room temperature, while molecular compounds can be solid, liquid, or gas. Ionic compounds conduct electricity when dissolved in water, while molecular compounds do not.
Molecular compounds are formed by sharing of electrons between atoms, resulting in covalent bonds, while ionic compounds are formed by transferring electrons from one atom to another, resulting in ionic bonds. Molecular compounds have discrete molecules with defined molecular formulas, while ionic compounds do not have discrete molecules and are represented by empirical formulas showing the ratio of ions present in the compound.
Ionic compounds tend to have higher melting and boiling points compared to molecular compounds. This is because ionic bonds are generally stronger than the intermolecular forces present in molecular compounds, such as van der Waals forces. The strong electrostatic forces between ions in an ionic compound require more energy to overcome, leading to higher melting and boiling points.
Many ionic compounds exist as crystals but covalent compounds as molecules (there are exceptions as diamond though). Ionic compounds would be good electrical conductors unlike molecular compounds.
Water can dissolve some ionic compounds as well as some molecular compounds because of its polarity. It is polar enough to dissolve ionic compounds into their ions. Water does not dissolve molecular compounds by breaking covalent bonds, but through intermolecular forces.
That's right, solutions of ionic compounds do conduct electricity well.
Ionic compounds typically have higher conductivity than molecular compounds because ionic compounds dissociate into ions in solution, allowing for the flow of electric current. Molecular compounds, on the other hand, do not dissociate into ions in solution and therefore exhibit lower conductivity.
No
Molecular (covalent) compounds are not dissociated in water.
You can determine whether a compound is ionic or molecular based on the types of elements it contains. Ionic compounds typically consist of a metal and a nonmetal, while molecular compounds are made up of nonmetals only. Additionally, ionic compounds tend to have high melting and boiling points, while molecular compounds have lower melting and boiling points.