Molecular compounds are formed by sharing of electrons between atoms, resulting in covalent bonds, while ionic compounds are formed by transferring electrons from one atom to another, resulting in ionic bonds. Molecular compounds have discrete molecules with defined molecular formulas, while ionic compounds do not have discrete molecules and are represented by empirical formulas showing the ratio of ions present in the compound.
Ionic compounds have higher melting and boiling points than molecular compounds due to the strong electrostatic forces between ions. Ionic compounds are usually solid at room temperature, while molecular compounds can be solid, liquid, or gas. Ionic compounds conduct electricity when dissolved in water, while molecular compounds do not.
Ionic compounds do not have molecular formulas. Instead, they have empirical formulas that represent the simplest whole-number ratio of ions in the compound. Ionic compounds are formed by the combination of positive and negative ions held together by electrostatic forces.
Ionic compounds tend to have higher melting and boiling points compared to molecular compounds. This is because ionic bonds are generally stronger than the intermolecular forces present in molecular compounds, such as van der Waals forces. The strong electrostatic forces between ions in an ionic compound require more energy to overcome, leading to higher melting and boiling points.
Molecular compounds in water form solutions where the molecules remain intact and dispersed individually. Ionic compounds, on the other hand, dissociate into ions when in water, resulting in conductive solutions due to the presence of charged particles. Additionally, molecular compounds generally do not conduct electricity in solution.
Once you get into the realm of compounds you are really looking at two types---ionic and molecular. Molecular compounds are made up of all the same type of molecule, and those molecules consist of a series of atoms covalently bonded together. The molecular formula of a molecular compound gives the number of each type of atom that makes up the molecule. Ionic compounds are different---there are no definable molecules present, just lattices of alternating positive and negative ions (charged atoms). So unlike molecular compounds there is no definable subunit in an ionic compound. Instead ionic compounds are represented by the simplest ratio of ions in the compound. For instance, in table salt there is one sodium ion per chlorine ion so the formula is NaCl. that does not mean there are little NaCl molecules making up the compound, just that the ratio of those two ions is 1:1. In calcium chloride there are two chloride ions for every calcium ion, so its formula is CaCl2. So the simple answe to the question is that molecular formulas are not used for ionic compounds because they are not comprised of molecules. That does not keep people (even chemists) from referring to the formulas of ionic compounds as "molecular formulas" but it is technically a misnomer. Simply calling them "formulas" or "ionic formulas" would be more appropriate.
Ionic compounds have higher melting and boiling points than molecular compounds due to the strong electrostatic forces between ions. Ionic compounds are usually solid at room temperature, while molecular compounds can be solid, liquid, or gas. Ionic compounds conduct electricity when dissolved in water, while molecular compounds do not.
Ionic compounds do not have molecular formulas. Instead, they have empirical formulas that represent the simplest whole-number ratio of ions in the compound. Ionic compounds are formed by the combination of positive and negative ions held together by electrostatic forces.
Ionic compounds tend to have higher melting and boiling points compared to molecular compounds. This is because ionic bonds are generally stronger than the intermolecular forces present in molecular compounds, such as van der Waals forces. The strong electrostatic forces between ions in an ionic compound require more energy to overcome, leading to higher melting and boiling points.
Aqueous solutions of ionic compounds consist of ions dissolved in water, while solutions of molecular compounds consist of intact molecules dispersed in water. Ionic compounds dissociate into ions in water, leading to electrolytic behavior, while molecular compounds usually do not conduct electricity in solution unless they ionize.
Molecular compounds in water form solutions where the molecules remain intact and dispersed individually. Ionic compounds, on the other hand, dissociate into ions when in water, resulting in conductive solutions due to the presence of charged particles. Additionally, molecular compounds generally do not conduct electricity in solution.
Once you get into the realm of compounds you are really looking at two types---ionic and molecular. Molecular compounds are made up of all the same type of molecule, and those molecules consist of a series of atoms covalently bonded together. The molecular formula of a molecular compound gives the number of each type of atom that makes up the molecule. Ionic compounds are different---there are no definable molecules present, just lattices of alternating positive and negative ions (charged atoms). So unlike molecular compounds there is no definable subunit in an ionic compound. Instead ionic compounds are represented by the simplest ratio of ions in the compound. For instance, in table salt there is one sodium ion per chlorine ion so the formula is NaCl. that does not mean there are little NaCl molecules making up the compound, just that the ratio of those two ions is 1:1. In calcium chloride there are two chloride ions for every calcium ion, so its formula is CaCl2. So the simple answe to the question is that molecular formulas are not used for ionic compounds because they are not comprised of molecules. That does not keep people (even chemists) from referring to the formulas of ionic compounds as "molecular formulas" but it is technically a misnomer. Simply calling them "formulas" or "ionic formulas" would be more appropriate.
Many ionic compounds exist as crystals but covalent compounds as molecules (there are exceptions as diamond though). Ionic compounds would be good electrical conductors unlike molecular compounds.
Binary ionic compounds have 2 elements, the element on the left (cation) should be a metal (left side of the zig zag line), and the other element on the right should be nonmetal (right side of the zig zag line)Binary molecular compounds have 2 NON METAL elements
Water can dissolve some ionic compounds as well as some molecular compounds because of its polarity. It is polar enough to dissolve ionic compounds into their ions. Water does not dissolve molecular compounds by breaking covalent bonds, but through intermolecular forces.
Ionic compounds typically have higher conductivity than molecular compounds because ionic compounds dissociate into ions in solution, allowing for the flow of electric current. Molecular compounds, on the other hand, do not dissociate into ions in solution and therefore exhibit lower conductivity.
Molecular (covalent) compounds are not dissociated in water.
No