There are three properties that can be used and they are the boiling point elevation, freezing point depression, and osmotic pressure. The molar mass is equal to mass of the unknown divided by the moles of the unknown.
we can determine the molecular weight from landsberger experiment for elevation of boiling point by using the formula M2=(KBW2)*1000/T'W1 where M2=molecular mass Kb=ebullioscopic constant or molal boiling point constant W2=mass of solute W1=mass of solvent T'=change in temprature
To calculate the gram molecular weight of an unknown liquid, you need to determine the molecular formula of the liquid and then add up the atomic weights of all the atoms in the formula. This will give you the gram molecular weight of the unknown liquid.
To calculate the equivalent weight of an oxide, you first determine its molecular weight. Then you look at how many oxygen atoms are present in the formula of the oxide and divide the molecular weight by that number of oxygen atoms. This result is the equivalent weight of the oxide.
To determine the molecular weight from a titration curve, one can identify the equivalence point on the curve where the amount of titrant added is equal to the amount of analyte present. By knowing the molarity of the titrant and the volume added at the equivalence point, one can calculate the moles of analyte. Then, by dividing the mass of the analyte by the moles, the molecular weight can be determined.
To determine the number of carbons in a compound using mass spectrometry, scientists analyze the molecular ion peak in the mass spectrum. The molecular ion peak represents the molecular weight of the compound, which can be used to calculate the number of carbons based on the known atomic weight of carbon.
To determine the equivalent weight from the molecular weight, you need to divide the molecular weight by the valence (or charge) of the compound. For example, for a compound with a molecular weight of 100 g/mol and a valence of 2, the equivalent weight would be 50 g/equiv.
we can determine the molecular weight from landsberger experiment for elevation of boiling point by using the formula M2=(KBW2)*1000/T'W1 where M2=molecular mass Kb=ebullioscopic constant or molal boiling point constant W2=mass of solute W1=mass of solvent T'=change in temprature
The formula for ethyl alcohol, or ethanol, is C2H6O.See the Related Questions to the left to determine the molecular weight of any compound, such as ethanol.
To calculate the gram molecular weight of an unknown liquid, you need to determine the molecular formula of the liquid and then add up the atomic weights of all the atoms in the formula. This will give you the gram molecular weight of the unknown liquid.
To calculate the molecular weight, you need to perform a chemical analysis to determine the elemental composition of the unknown solute. Then, using the atomic masses of the elements found, you can calculate the molecular weight by summing the atomic weights of all the atoms in the molecule. To determine the uncertainty in the molecular weight, you would need to propagate the errors in the atomic masses and the elemental composition through the calculation using the rules of error propagation.
To calculate the equivalent weight of an oxide, you first determine its molecular weight. Then you look at how many oxygen atoms are present in the formula of the oxide and divide the molecular weight by that number of oxygen atoms. This result is the equivalent weight of the oxide.
To determine the molecular weight from a titration curve, one can identify the equivalence point on the curve where the amount of titrant added is equal to the amount of analyte present. By knowing the molarity of the titrant and the volume added at the equivalence point, one can calculate the moles of analyte. Then, by dividing the mass of the analyte by the moles, the molecular weight can be determined.
To calculate the molecular weight of a protein in electrophoresis, you would use a standard curve generated with protein standards of known molecular weights run on the same gel. By plotting the migration distance of the standard proteins against their known molecular weights, you can then determine the molecular weight of your protein of interest based on its migration distance on the gel in comparison to the standard curve.
To determine the number of carbons in a compound using mass spectrometry, scientists analyze the molecular ion peak in the mass spectrum. The molecular ion peak represents the molecular weight of the compound, which can be used to calculate the number of carbons based on the known atomic weight of carbon.
It has a molecular weight of 21,600 Daltons
Not completely. The empirical formula of a substance can be determined from its percent composition, but a determination of molecular weight is needed to decide which multiple of the empirical formula represents the molecular formula.
molecular structur C9H8K2O4molecular weight: 258.35