- Dissolve 502 g uranyl nitrate hexahydrate in distilled water in A Berzelius flask.
- Transfer quantitatively the solution in a 1 L volumetric flask.
- Add distilled water to the mark, maintaining the flask in a thermostat, at 20 0C, for 30 min.
- Stir vigorously.
- Extract an aliquot for analysis, to know exactly the uranium concentration.
To prepare a 1N NaOH solution, you would need to dissolve 40 grams of NaOH in water to make 1 liter of solution. This amount is used because 1N solution means 1 mole of NaOH per liter of solution, and the molar mass of NaOH is 40 g/mol, so 40 grams of NaOH is needed to have 1 mole in 1 liter of solution.
Yes. One mole of anything contains 6.02x10^23 "particles". In the case of the element uranium, it would be 6.02x10^23 atoms of uranium in 1 mole. In the case of CO2, it would be 6.02x10^23 molecules of CO2 in 1 mole.
To prepare a 1 M solution of perchloric acid (HClO4), you would need to dissolve 1 mole of HClO4 in enough water to make a final volume of 1 liter. This can be calculated by using the formula: moles = Molarity (M) x Volume (L). Please handle perchloric acid with caution and use appropriate safety measures while preparing the solution.
In 1 Litre solution there are:1.0 mole HCl (totally ionised into 1.0 mole H3O+ and 1.0 mole Cl-)and54 mole H2O (the remaining of 55)
To prepare one normal solution of potassium nitrate, you would dissolve 101.1 grams of potassium nitrate in enough water to make 1 liter of solution. This solution will have a concentration of 1 mole per liter, which is considered a normal solution. Make sure to use a balance to accurately measure the mass of potassium nitrate and a volumetric flask to ensure a final volume of 1 liter.
To prepare a 1 mole solution of dimethoxyhydroxyacetophenone, you would dissolve 166.21 grams of the compound in enough solvent to make a total volume of 1 liter. Calculate the required weight based on the molar mass of dimethoxyhydroxyacetophenone (C10H12O4).
A mole of hydrogen contains Avogadro's number of hydrogen atoms, while a mole of uranium contains Avogadro's number of uranium atoms. Hydrogen is a light element with a low atomic weight, while uranium is a heavy element with a high atomic weight. This means that a mole of hydrogen weighs much less than a mole of uranium.
You could titrate equal volumes of 1M solution of NaOH and 1M solution of HCl to obtain 1M solution of NaCl.
The molar volume of uranium is approximately 12.5 cubic centimeters per mole.
To prepare a 1N NaOH solution, you would need to dissolve 40 grams of NaOH in water to make 1 liter of solution. This amount is used because 1N solution means 1 mole of NaOH per liter of solution, and the molar mass of NaOH is 40 g/mol, so 40 grams of NaOH is needed to have 1 mole in 1 liter of solution.
Yes. One mole of anything contains 6.02x10^23 "particles". In the case of the element uranium, it would be 6.02x10^23 atoms of uranium in 1 mole. In the case of CO2, it would be 6.02x10^23 molecules of CO2 in 1 mole.
1 atomgram of uranium = 238,02891 gramsAnswer:The molar mass of Uranium is 238.03 g/mol
To prepare a 0.01M KCl (potassium chloride) solution in 1 liter, you would need to dissolve 0.74 grams of KCl in enough water to make 1 liter of solution. This can be calculated using the formula: moles = Molarity x Volume (in liters) x Molecular weight of KCl.
To prepare a 1 M solution of perchloric acid (HClO4), you would need to dissolve 1 mole of HClO4 in enough water to make a final volume of 1 liter. This can be calculated by using the formula: moles = Molarity (M) x Volume (L). Please handle perchloric acid with caution and use appropriate safety measures while preparing the solution.
In 1 Litre solution there are:1.0 mole HCl (totally ionised into 1.0 mole H3O+ and 1.0 mole Cl-)and54 mole H2O (the remaining of 55)
9.6 grams of uranium (1 mole U/238.0 grams)(6.022 X 10^23/1 mole U) = 2.4 X 10^22 atoms of uranium
To prepare one normal solution of potassium nitrate, you would dissolve 101.1 grams of potassium nitrate in enough water to make 1 liter of solution. This solution will have a concentration of 1 mole per liter, which is considered a normal solution. Make sure to use a balance to accurately measure the mass of potassium nitrate and a volumetric flask to ensure a final volume of 1 liter.