A proton gradient is established with an electron transport chain, where energy from electrons is donated from an high-energy source (such as food) to provide intracellular enzymes the energy to pump protons across an impermeable membrane in order to form a region with a high concentration of protons.
Hope this helps! :)
In photosynthesis, an H+ ion gradient forms across the thylakoid membrane of the chloroplast. This gradient is established through the process of electron transport chain and proton pumping during the light reactions, which leads to the generation of ATP via chemiosmosis.
Proton pump channels are actually used to create a proton gradient across a membrane during chemiosmosis. This gradient drives the enzyme ATP synthase to convert ADP and inorganic phosphate into ATP.
NADH carries high-energy electrons that can be used in the process of chemiosmosis to create a proton gradient across the inner mitochondrial membrane. This proton gradient is then used to generate ATP through ATP synthase.
oxidative phosphorylation does not involve with the respiratory complex in the inner mitochondria membrane. Oxidative phosphorylation useful in generate the production of ATP from the proton gradient or proton motive force. Chemiosmotic coupling invilve the manner of ETC on how its create the proton gradient and the proton gradient is indirectly directed with the production of ATP.The proton gradient causes the conformational change of tigthly binding of ATP to open binding ATP .Then ATP can be released and be used to the metabolic cell needs and translocate the ATP to cytoplasm that can be used to phosphorylate substrate.
Proton transport occurs in Complex I of the electron transport chain within the mitochondria. As electrons move through the complex, protons are pumped from the mitochondrial matrix into the intermembrane space, creating a proton gradient that drives ATP synthesis.
The proton gradient across the thylakoid membrane is powered by the flow of electrons from water to NADP+ during photosynthesis. This flow of electrons creates a proton gradient that drives ATP production through ATP synthase.
A proton gradient in biology refers to the difference in proton (H⁺) concentration across a membrane, creating an electrochemical gradient. This gradient is crucial in processes like cellular respiration and photosynthesis, where it drives the synthesis of ATP via ATP synthase. The flow of protons back across the membrane, down their gradient, generates energy that is harnessed by cells for various biochemical processes.
Proton pumps are used in photosynthesis to create a proton gradient across the thylakoid membrane. This gradient is essential for the production of ATP, which is a key energy source for the light-dependent reactions of photosynthesis.
In chloroplasts, the electron transport chain pumps protons from the stroma into the thylakoid lumen. This creates a proton gradient across the thylakoid membrane, similar to the proton gradient established in mitochondria. The energy from this gradient is then used to synthesize ATP through ATP synthase during the process of photophosphorylation.
Dinitrophenol
ATP synthase is the enzyme responsible for the synthesis of ATP using a proton gradient across the mitochondrial inner membrane. It harnesses the energy stored in the proton gradient to drive the phosphorylation of ADP to form ATP.
In photosynthesis, an H+ ion gradient forms across the thylakoid membrane of the chloroplast. This gradient is established through the process of electron transport chain and proton pumping during the light reactions, which leads to the generation of ATP via chemiosmosis.
As a proton gradient
Chemiosmosis (involves the pumping of protons through special channels in the membranes of mitochondria from the inner to the outer compartment. The pumping establishes a proton gradient).
The proton gradient, established across a membrane such as the inner mitochondrial membrane, directly influences the pH of the cell. As protons (H⁺ ions) accumulate in the intermembrane space during processes like oxidative phosphorylation, the local concentration of protons increases, resulting in a lower pH (more acidic environment) in that space. Conversely, the cytosolic side, where protons are less concentrated, has a higher pH (more alkaline). Thus, the proton gradient is a critical factor in determining the pH balance within different cellular compartments.
The inner mitochondrial membrane is the key feature that allows the isolation of the proton gradient in mitochondria. It is highly impermeable to ions and small molecules, which enables the establishment and maintenance of the electrochemical gradient (proton motive force) across the membrane. This gradient is crucial for ATP synthesis as protons flow back into the mitochondrial matrix through ATP synthase during oxidative phosphorylation.
The immediate source of energy used to produce a proton gradient in photosynthesis is light energy. Light energy is captured by chlorophyll within the thylakoid membranes of chloroplasts, where it drives the process that generates a proton gradient across the membrane.