1.23*10^27
Atmospheric pressure exerts pressure on the molecules of the liquid, confining them. In order to boil, the electrons must be excited, but must become hotter to overcome the pressure of the atmosphere. Therefore, pressure makes a liquid boil at a higher temperature. With a solid, the molecules are already compact together and have to be melted before they can be boiled. This does not require excitation of electrons, but it does require movement of electrons. Once the solid is melted, pressure will make it harder for the electrons to become excited.
The temperature at which the vapor pressure of the liquid equals the atmospheric pressure is called THE BOILING POINT.
Water boils when its vapor pressure equals atmospheric pressure because at this point the molecules in the liquid have enough energy to escape into the gas phase, creating bubbles and causing the liquid to boil. This balance of vapor pressure and atmospheric pressure allows the liquid to change into a gas at a constant temperature.
Water usually boils at 212F or 100C at sea level. As you go higher up in the atmosphere (higher altitude), the amount of atmosphere pushing down on you decreases, hence the pressure decreases. Water boils when the vapor pressure of the water equals the atmospheric pressure. Vapor pressure increases with increasing temperature, so when there is less atmospheric pressure, a smaller vapor pressure is required to get the water boiling, hence a lower boiling temperature.
Type of molecule: intermolecular forces between molecules are: * relatively strong, the vapor pressure will be relatively low. * relatively weak, the vapor pressure will be relatively high. Temperature: * higher temperature, more molecules have enough energy to escape from the liquid or solid. * lower temperature, fewer molecules have sufficient energy to escape from the liquid or solid.
BAHHBEEE!
Temperature and altitude are two qualities that affect atmospheric pressure. As temperature increases, air molecules move faster and create higher pressure. At higher altitudes, there are fewer air molecules above, leading to lower pressure.
Atmospheric pressure exerts pressure on the molecules of the liquid, confining them. In order to boil, the electrons must be excited, but must become hotter to overcome the pressure of the atmosphere. Therefore, pressure makes a liquid boil at a higher temperature. With a solid, the molecules are already compact together and have to be melted before they can be boiled. This does not require excitation of electrons, but it does require movement of electrons. Once the solid is melted, pressure will make it harder for the electrons to become excited.
The temperature at which the vapor pressure of the liquid equals the atmospheric pressure is called THE BOILING POINT.
The saturation temperature of water at standard atmospheric pressure is 100 degrees Celsius.
Pressure is the force exerted on a surface per unit area. In gases, pressure affects their behavior by influencing their volume, temperature, and density. When pressure increases, gases are compressed and their molecules move closer together, leading to changes in volume and temperature. Conversely, when pressure decreases, gases expand and their molecules move farther apart.
There is a relationsship of speed of sound to the temperature but not to the atmospheric pressure.
Xenon is in the gas phase at room temperature and normal atmospheric pressure.
Water boils when its internal pressure reaches that of the atmospheric pressure. Therefor, if one lowers the atmospheric pressure, the water would boil at a lower temperature (in fact, one can make water boil at room temperature by dramatically lowering the atmospheric pressure).
Not sure what celecies means. If the temperature falls to 100 degrees Celsius, then at normal atmospheric pressure, the vapour molecules will condense into liquid water.
Water boils when its vapor pressure equals atmospheric pressure because at this point the molecules in the liquid have enough energy to escape into the gas phase, creating bubbles and causing the liquid to boil. This balance of vapor pressure and atmospheric pressure allows the liquid to change into a gas at a constant temperature.
Water boils at a lower temperature at higher altitudes because water boils when the vapor pressure of the heated water matches the pressure of the atmosphere pushing downward. Since there is a higher atmospheric pressure at sea level than in say a mountain, the temperature needed to boil water decreases.