To determine the number of grams of pure sodium hydroxide present in a solution with a known volume, you need to know the concentration of the solution in g/ml. Then you can use the formula: grams = concentration (g/ml) x volume (ml)
To make a 5% water solution of sodium hydroxide, you would mix 5 grams of sodium hydroxide with 95 grams of water. This will give you a total of 100 grams of solution, with 5% of it being sodium hydroxide. Remember to always add the sodium hydroxide to the water slowly and with caution due to its caustic nature.
The density of a sodium hydroxide solution is typically around 1.02 to 1.03 grams per cubic centimeter.
C2H4O2 + NaOH = H2O + C2H3O2Na Acetic acid (60 gm) + sodium hydroxide ( 40 gm) = 100 gm water (18 gm) + sodium acetate (82 gm) = 100 gm Ratio reactants to products = 1:1 Molarity = moles / L, 3M = 3 moles / 1 L Acetic acid = 60 gm / total reactant 100gm = 1.8 moles Multiply by 3 = 1.8 moles or 180 grams Sodium Hydroxide = 40 gm / total reactant 100 mg = 1.2 moles or 120 grams. 180 grams acetic acid + 120 grams sodium hydroxide = 300 grams. 300 grams divided by 1 liter = 3M So in order to make 3 M sodium acetate combine solution, add 180 grams acetic acid and 120 grams sodium hydroxide with 1 liter of water.
The density of a 1 M solution of sodium hydroxide is approximately 1.04 g/mL at room temperature.
First, calculate the number of moles of nitric acid present in 3.50 L of 0.700 M solution. Since nitric acid is a diprotic acid, the mole ratio with sodium hydroxide is 1:2. Then, use the mole ratio to determine the number of moles of sodium hydroxide needed to neutralize the nitric acid. Finally, convert the moles of sodium hydroxide to grams using its molar mass.
To make a 5% water solution of sodium hydroxide, you would mix 5 grams of sodium hydroxide with 95 grams of water. This will give you a total of 100 grams of solution, with 5% of it being sodium hydroxide. Remember to always add the sodium hydroxide to the water slowly and with caution due to its caustic nature.
The density of a sodium hydroxide solution is typically around 1.02 to 1.03 grams per cubic centimeter.
the molar mass of sodium hydroxide is 40g/mol mike
98g
4.00% (percent) by mass (weight) means 4.00g for each 100g of solution. There are 2 x 100g of water, so 2 x 4g =8.00g of NaOH (sodium hydroxide) But, a 4% aqueous solution of NaOH should mean it's 96% (96g) water. There are 2.08333 x 96g of water, so 2.08333 x 4g = 8.33g of NaOH.
262 - 266
262 - 266
Actually a 50% solution of sodium hydroxide would be made using enough water to total 100 mL of solution if using sodium hydroxide pellets or crystals. 50% of the total weight of the solution not 50% of the weight of the water used. As suggested by the first answer, the solution would be about a 33% solution. percentage solutions are weight for weight. Therefore 50% solution would be 50g of sodium hydroxide dissolved in 100g (100mL) of water.
To prepare a 3% solution of sodium hydroxide, you can dissolve 3 grams of sodium hydroxide pellets in 100 mL of distilled water. Ensure proper safety precautions are taken when handling sodium hydroxide as it is a caustic substance that can cause burns.
In chemistry, the concentration of a substance in solution is determined by molarity, which is symbolized by "M". This indicates the number of moles of a substance dissolved in one liter of a solvent (usually water). For example: - 1 mole of sodium chloride = 58 grams - If 116 grams of sodium chloride are dissolved in 1 liter of water, then that solution is a 2-molar (2 M) solution of sodium chloride. - If 232 grams of sodium chloride are dissolved in 1 liter of water, then that solution is a 4-molar (4 M) solution of sodium chloride.
.13 (Plato)
C2H4O2 + NaOH = H2O + C2H3O2Na Acetic acid (60 gm) + sodium hydroxide ( 40 gm) = 100 gm water (18 gm) + sodium acetate (82 gm) = 100 gm Ratio reactants to products = 1:1 Molarity = moles / L, 3M = 3 moles / 1 L Acetic acid = 60 gm / total reactant 100gm = 1.8 moles Multiply by 3 = 1.8 moles or 180 grams Sodium Hydroxide = 40 gm / total reactant 100 mg = 1.2 moles or 120 grams. 180 grams acetic acid + 120 grams sodium hydroxide = 300 grams. 300 grams divided by 1 liter = 3M So in order to make 3 M sodium acetate combine solution, add 180 grams acetic acid and 120 grams sodium hydroxide with 1 liter of water.