0,31 moles of anhydrous CaBr2 is equal to 61,966 g.
1st you must find the molar mass of CaBr2. Ca 40.08g * (number of moles in the compound) 1 Br 79.90g * 2 This give you the amount (g) in 1 mole of CaBr2. Multiply by 14 and you get the answer.
The molar mass of the compound CaBr2 is 199.9 grams per mole.
The chemical formula for calcium bromide is CaBr2.
To find the number of moles in 1.2 kg of calcium bromide, you first need to determine the molar mass of calcium bromide (CaBr2), which is approximately 199.89 g/mol. Then convert the mass of 1.2 kg to grams (1200 g). Finally, divide the mass in grams by the molar mass to find the number of moles. In this case, 1200g / 199.89g/mol ≈ 6 moles of calcium bromide.
That is a lot of calcium bromide we are dealing with. The formula mass of calcium bromide, CaBr2 is 40.1 + 2(79.9) = 199.9.Amount of CaBr2 = (7.4 x 1000)/199.9 = 32.0mol There are 32 moles of calcium bromide in a 7.4kg pure sample.
Well, darling, if you want to know how many moles of CaBr2 are in 5.0 grams, you just need to divide the mass by the molar mass of CaBr2. The molar mass of CaBr2 is approximately 199.89 g/mol, so 5.0 grams of CaBr2 is roughly 0.025 moles. Hope that helps, sugar!
To find the number of moles of CaBr2 in 5.0 grams, you first need to calculate the molar mass of CaBr2. The molar mass of CaBr2 is 200.8 g/mol. Divide the given mass by the molar mass to find the number of moles: 5.0 g / 200.8 g/mol = 0.025 moles of CaBr2. Since there is one mole of CaBr2 for every two moles of CaBr, you have half of that amount in moles of CaBr: 0.025 moles / 2 = 0.0125 moles of CaBr.
1st you must find the molar mass of CaBr2. Ca 40.08g * (number of moles in the compound) 1 Br 79.90g * 2 This give you the amount (g) in 1 mole of CaBr2. Multiply by 14 and you get the answer.
To find the grams of bromine (Br) in 595 g of calcium bromide (CaBr2), first determine the molar mass of CaBr2. The molar mass is approximately 40.08 g/mol for Ca and 79.90 g/mol for Br, giving a total of about 199.89 g/mol for CaBr2. Since there are two bromine atoms in each formula unit, the mass of bromine in CaBr2 is about 159.80 g (2 × 79.90 g). Thus, the mass of Br in 595 g of CaBr2 can be calculated as follows: (159.80 g Br / 199.89 g CaBr2) × 595 g CaBr2 ≈ 477.23 g of Br.
The molar mass of the compound CaBr2 is 199.9 grams per mole.
The chemical formula for calcium bromide is CaBr2.
To find the number of moles in 1.2 kg of calcium bromide, you first need to determine the molar mass of calcium bromide (CaBr2), which is approximately 199.89 g/mol. Then convert the mass of 1.2 kg to grams (1200 g). Finally, divide the mass in grams by the molar mass to find the number of moles. In this case, 1200g / 199.89g/mol ≈ 6 moles of calcium bromide.
That is a lot of calcium bromide we are dealing with. The formula mass of calcium bromide, CaBr2 is 40.1 + 2(79.9) = 199.9.Amount of CaBr2 = (7.4 x 1000)/199.9 = 32.0mol There are 32 moles of calcium bromide in a 7.4kg pure sample.
Ca + Br2 = CaBr2 doesn't need to be balanced.
A solution of CaBr2 is neutral. When CaBr2 dissolves in water, it dissociates into calcium ions (Ca2+) and bromide ions (Br-), which do not significantly affect the pH of the solution.
The answer to this question is Calcium (Ca) Br2 (-ide) Bromide. Put them together, you get Calcium Bromide.
In an aqueous solution of CaBr2, the solute particles are Ca2+ cations and Br- anions. When dissolved in water, CaBr2 dissociates into these ions, which are responsible for conducting electricity and other properties of the solution.