Ga2(CO3)3 -> Ga2O3 + 3CO2
Gallium (III) Carbonate and Gallium Oxide are equimolar so 55 moles of gallium carbonate must be used.
The Molar Mass of Gallium (III) Carbonate is about 319 g/mol
319 g/mol (55 mols) = 17,545 g
gallium (III) carbonate - Ga2(CO3)3 gallium (III) oxide - Ga2O3
To find the grams of uranium oxide formed, we need to determine the molar mass of uranium and oxygen, calculate the moles of each element present, and finally the moles of uranium oxide formed. Then, we convert moles to grams using the molar mass of uranium oxide. The final answer for the grams of uranium oxide formed depends on the stoichiometry of the reaction.
This is a mass stoichiometry problem. Start with the balanced equation: CaCO3 --> CaO + CO2. Do a conversion from 50g CaO to moles: 56g/1mol=50g/x, x=.9 moles. The equation is balanced as written, with all coefficients understood to be 1. So: .9 moles CaO means .9 moles CaCO3. Do another conversion from moles to grams: 100g/1mol=x/.9 moles. Solve for x to get 90 grams. (56g=molar mass of calcium oxide; 100g=molar mass of calcium carbonate.)
To determine the grams of aluminum oxide formed, we need to consider the balanced chemical equation for the reaction between aluminum and oxygen. The molar ratio between aluminum and aluminum oxide is 4:2. So, first calculate the moles of aluminum in 1020g, then use this to find the moles of aluminum oxide produced, and finally convert moles of aluminum oxide to grams.
For this you need the atomic (molecular) mass of Al2O3. Take the number of grams and divide it by the atomic mass. Multiply by one mole for units to cancel. Al2O3= 102 grams408 grams Al / (102 grams) = 4.00 moles Al
gallium (III) carbonate - Ga2(CO3)3 gallium (III) oxide - Ga2O3
The molar ratio between calcium carbonate and calcium oxide is 1:1. So, 25 moles of calcium carbonate will produce 25 moles of calcium oxide. The molar mass of calcium oxide is 56.08 g/mol, so the mass of calcium oxide produced will be 25 moles * 56.08 g/mol = 1402 g.
To find the number of moles in 28 grams of calcium oxide, we need to divide the given mass by the molar mass of calcium oxide. The molar mass of calcium oxide (CaO) is 56.08 g/mol. So, 28 grams of CaO is equal to 28 g / 56.08 g/mol = 0.5 moles of calcium oxide.
To find the grams of uranium oxide formed, we need to determine the molar mass of uranium and oxygen, calculate the moles of each element present, and finally the moles of uranium oxide formed. Then, we convert moles to grams using the molar mass of uranium oxide. The final answer for the grams of uranium oxide formed depends on the stoichiometry of the reaction.
45/94.2 is 0.4777 moles
75 grams water is equal to 4,166 moles.
The molar mass of calcium carbonate is 100.1 g/mol, and the molar mass of calcium oxide is 56.08 g/mol. Therefore, 12.25 grams of calcium carbonate would produce 6.86 grams of calcium oxide after decomposition.
62 grams a+
This is a mass stoichiometry problem. Start with the balanced equation: CaCO3 --> CaO + CO2. Do a conversion from 50g CaO to moles: 56g/1mol=50g/x, x=.9 moles. The equation is balanced as written, with all coefficients understood to be 1. So: .9 moles CaO means .9 moles CaCO3. Do another conversion from moles to grams: 100g/1mol=x/.9 moles. Solve for x to get 90 grams. (56g=molar mass of calcium oxide; 100g=molar mass of calcium carbonate.)
1,4 moles of lead(II) oxide are formed.
Ionic gallium takes a 3+ (Ga3+) charge, and the hydroxide ion takes a 1- (OH-) charge. Therefore, the chemical formula (the combination of the ions to form an ionic compound) is Ga(OH)3, which satisfies all the charges. There are several other forms of ionic gallium compounds as well, include Gallium Oxide (Ga2O3) and Gallium Oxide Hydroxide (GaOOH).
To determine the grams of aluminum oxide formed, we need to consider the balanced chemical equation for the reaction between aluminum and oxygen. The molar ratio between aluminum and aluminum oxide is 4:2. So, first calculate the moles of aluminum in 1020g, then use this to find the moles of aluminum oxide produced, and finally convert moles of aluminum oxide to grams.