8.85
To produce 1 mole of urea, 1 mole of carbon dioxide is needed. The molar mass of urea is 60 grams/mol, and the molar mass of carbon dioxide is 44 grams/mol. Therefore, to produce 125 grams of urea, 125 grams/60 grams/mol = 2.08 moles of urea is needed. This means 2.08 moles of carbon dioxide is needed, which is 2.08 moles * 44 grams/mol = 91.52 grams of carbon dioxide needed.
To calculate this, you first need to determine the mass of pure iron in 454.0 grams. This is done by multiplying 454.0 grams by 0.35 (the decimal equivalent of 35.00%). This gives 158.9 grams of pure iron. To find out how many grams of ore is needed, you need to set up the equation 0.35 * Mass of ore = 158.9 grams, which gives you 454 grams of ore needed.
To find the grams of oxygen needed, we first calculate the molar mass of titanium chloride (TiCl4) and oxygen (O2). Then, we use the molar ratio of TiCl4 to O2 from the balanced chemical equation to find the grams of O2 needed.
Since the reaction involves the formation of sodium chloride (NaCl), the molar ratio of sodium to chlorine is 1:1. Therefore, if 10 grams of sodium reacts to form 35 grams of NaCl, then 35 grams of chlorine is also needed for this reaction.
This is just simple maths. If you need 2 grams of X for every 4 grams of Y, you need to multiply this up to the scale you are given 2x = 4y 4x = 8y 6x = 12y So you would need 6 grams of element X to make the same compound.
To solve this, we will figure out how many grams there are per litre. To do this, we will divide the overall amount of litres 350 grams goes into by 350, so we are dividing 350 by 10,000. This answer is 0.035. We will then multiply 0.035 (how many grams needed for one litre) by 3300, to get how many are needed for that many litres, which gives us 115.5 grams. 115.5 grams are needed for 3300 litres if 250 grams are needed for 10,000 litres.
6
To find the amount of chlorine needed to combine with silicon to form silicon tetrachloride, first calculate the molar masses of silicon and chlorine (28.09 g/mol and 35.45 g/mol, respectively). As silicon tetrachloride has a 1:4 ratio of silicon to chlorine, this means 1 mole of silicon (28.09 g) will react with 4 moles of chlorine (4 * 35.45 g) to form silicon tetrachloride. Therefore, to find the grams of chlorine needed to combine with 24.4 grams of silicon, calculate (24.4 g Si / 28.09 g Si) * (4 moles Cl * 35.45 g Cl).
A US pint is 473 grams. - An Imperial pint is 568 grams
banana element
89.3
This depends on the compound.
A lot
To produce 1 mole of urea, 1 mole of carbon dioxide is needed. The molar mass of urea is 60 grams/mol, and the molar mass of carbon dioxide is 44 grams/mol. Therefore, to produce 125 grams of urea, 125 grams/60 grams/mol = 2.08 moles of urea is needed. This means 2.08 moles of carbon dioxide is needed, which is 2.08 moles * 44 grams/mol = 91.52 grams of carbon dioxide needed.
Sodium sulfate is not prepared from hydrogen chloride.
63 g of water are needed.
Four and half