5.0x10^25 * (1 mol / 6.022x10^23 atoms) = 83 moles of iron.
To calculate the number of moles from the number of atoms, we need to divide the number of atoms by Avogadro's number (6.022 × 10^23), which gives 3.59 moles of iron atoms.
To find the number of moles, you first need to recognize that 6.022 x 10^23 atoms make up one mole (Avogadro's number). Thus, divide 6.85 x 10^25 atoms by Avogadro's number to get the number of moles. Therefore, the number of moles of potassium in this case would be 11.4 moles.
To find the number of moles, you need to divide the given number of iron atoms by Avogadro's number, which is approximately 6.022 x 10^23 atoms/mol. Therefore, for 5.22 x 10^22 iron atoms, the number of moles would be approximately 0.0867 moles.
To find the number of moles, you need to divide the number of atoms by Avogadro's number, which is about 6.022 x 10^23 atoms/mol. So, 5.98 x 10^24 atoms of iron would be approximately 9.93 moles of iron.
Quite a few. 6.32 X 10^25 atoms sodium (1 mole Na/6.022 X 10^23) = 105 moles of sodium
In order to find how many Moles of He are 1.20 x 1025 atoms of He, you need to divide 1.20 x 1025 atoms by the Avagadro's number (6.022 x 1023) The answer is 19.9 moles of He.
738 grams iron are equivalent to:- 12,626 moles- 76.10e23 atoms
9,003 x 1023 atoms of iron correspond to 1,495 moles.
0.4965 moles rounded to 4 significant figures
To calculate the number of moles from the number of atoms, we need to divide the number of atoms by Avogadro's number (6.022 × 10^23), which gives 3.59 moles of iron atoms.
To find the number of moles of PCl3, you need to first calculate the number of moles of Cl atoms in 3.68 * 10^25 atoms. There are 3 Cl atoms in each molecule of PCl3, so you divide the number of Cl atoms by 3 to get the number of moles of PCl3.
To find the number of moles, you first need to recognize that 6.022 x 10^23 atoms make up one mole (Avogadro's number). Thus, divide 6.85 x 10^25 atoms by Avogadro's number to get the number of moles. Therefore, the number of moles of potassium in this case would be 11.4 moles.
The equivalent is 154 moles.
To find the number of moles, you need to divide the given number of iron atoms by Avogadro's number, which is approximately 6.022 x 10^23 atoms/mol. Therefore, for 5.22 x 10^22 iron atoms, the number of moles would be approximately 0.0867 moles.
The element magnesium does not form polyatomic molecules with specific numbers of atoms. Therefore, one mole ofmagnesium contains Avogadro's Number of atoms, and Avogadro's number is about 6.022 X 1023. Therefore, 1.48 X 1025 atoms contains (1.48/6.022) X10(25-23) or about 24.7 moles, to the justified number of significant digits.
The element helium does not technically have "moles", because its atomsdo not form any chemical bond with other helium atoms. Its formula unit is a single atom. Avogadro's Number, the number of formula units in a gram atomic mass, is about 6.022 X 1023. Therefore, 1.20 x 1025 atoms constitutes (1.20 X 1025)/(6.022 X 1023) or about 19.9 formula masses, to the justified number of significant digits.
To find the number of moles, you need to divide the number of atoms by Avogadro's number, which is about 6.022 x 10^23 atoms/mol. So, 5.98 x 10^24 atoms of iron would be approximately 9.93 moles of iron.