The equivalent is 154 moles.
To find the number of moles, you first need to recognize that 6.022 x 10^23 atoms make up one mole (Avogadro's number). Thus, divide 6.85 x 10^25 atoms by Avogadro's number to get the number of moles. Therefore, the number of moles of potassium in this case would be 11.4 moles.
In order to find how many Moles of He are 1.20 x 1025 atoms of He, you need to divide 1.20 x 1025 atoms by the Avagadro's number (6.022 x 1023) The answer is 19.9 moles of He.
The answer is 224,141 grams oxygen.
There are approx 2.05*1025 molecules.
how many moles are represented by 1.51 x 10^24 atoms Pb
9.00 moles carbon (6.022 X 1023/1 mole carbon)(6 electrons/1 atom carbon) = 3.25 X 1025 electrons in 9.00 moles carbon ============================
To find the number of moles of PCl3, you need to first calculate the number of moles of Cl atoms in 3.68 * 10^25 atoms. There are 3 Cl atoms in each molecule of PCl3, so you divide the number of Cl atoms by 3 to get the number of moles of PCl3.
The element helium does not technically have "moles", because its atomsdo not form any chemical bond with other helium atoms. Its formula unit is a single atom. Avogadro's Number, the number of formula units in a gram atomic mass, is about 6.022 X 1023. Therefore, 1.20 x 1025 atoms constitutes (1.20 X 1025)/(6.022 X 1023) or about 19.9 formula masses, to the justified number of significant digits.
5.0x10^25 * (1 mol / 6.022x10^23 atoms) = 83 moles of iron.
1
There are 3 moles of sodium represented in one mole of sodium phosphate (Na3PO4). This is because the subscript 3 in Na3PO4 indicates that there are 3 sodium ions for every molecule of sodium phosphate.
To find the number of moles in 4.06 x 10^25 molecules of sodium fluoride, you would divide the number of molecules by Avogadro's number, which is approximately 6.022 x 10^23 molecules/mol. Therefore, 4.06 x 10^25 molecules / 6.022 x 10^23 molecules/mol ≈ 67.5 moles of sodium fluoride.