2H2 + O2 --> 2H2O
For every 2 moles of H2, 2 moles of H2O will be produced (i.e., a 1:1 ratio). So to produce 8.25 moles of H2O you will also need 8.25 moles of H2
To produce 1 mole of chloroform, you need 3 moles of chlorine. So, to produce 1.5 moles of chloroform, you would need 4.5 moles of chlorine. Converting moles to grams by using the molar mass of chlorine (35.5 g/mol) gives you 160.5 grams of chlorine required.
For the reaction 2 H2 + O2 -> 2 H2O, we see that 1 mole of O2 produces 2 moles of H2O. Therefore, to produce 10.2 moles of H2O, we would need 5.1 moles of O2.
You need to dissolve 180 grams of glucose in water and make it up to 1000ml. this produces 1 M Glucose solution.
2 moles of sodium will produce 1 mole of hydrogen gas according to the chemical equation 2Na + 2H2O → 2NaOH + H2. The molar mass of sodium is 23 g/mol and of hydrogen gas is 2 g/mol. Thus, 2 moles of sodium is 46 grams (2 moles * 23 g/mol), which will produce 2 moles of hydrogen gas.
To produce 1 mole of urea, 1 mole of carbon dioxide is needed. The molar mass of urea is 60 grams/mol, and the molar mass of carbon dioxide is 44 grams/mol. Therefore, to produce 125 grams of urea, 125 grams/60 grams/mol = 2.08 moles of urea is needed. This means 2.08 moles of carbon dioxide is needed, which is 2.08 moles * 44 grams/mol = 91.52 grams of carbon dioxide needed.
To produce 1 mole of chloroform, you need 3 moles of chlorine. So, to produce 1.5 moles of chloroform, you would need 4.5 moles of chlorine. Converting moles to grams by using the molar mass of chlorine (35.5 g/mol) gives you 160.5 grams of chlorine required.
CO2 + H2 -> CO + H2O one to one here 30.6 moles H2O (1 mole H2/1 mole H2O) = 30.6 moles Hydrogen gas needed
For the reaction 2 H2 + O2 -> 2 H2O, we see that 1 mole of O2 produces 2 moles of H2O. Therefore, to produce 10.2 moles of H2O, we would need 5.1 moles of O2.
Each mole of ammonia requires one mole of nitrogen atoms. However, the nitrogen in the air occurs as diatomic molecules; therefore, only one-half mole of molecular nitrogen is required for each mole of ammonia.
1 mole
mummy mole and daddy mole popped out a baby mole
To find the moles of cesium chlorate needed to produce 2.7 moles of oxygen gas, use the balanced chemical equation for the decomposition of cesium chlorate: 2CsClO3 -> 2CsCl + 3O2 From the equation, it shows that 2 moles of cesium chlorate produce 3 moles of oxygen gas. Therefore, you will need (2/3) * 2.7 = 1.8 moles of cesium chlorate to produce 2.7 moles of oxygen gas.
You need to dissolve 180 grams of glucose in water and make it up to 1000ml. this produces 1 M Glucose solution.
2 moles of sodium will produce 1 mole of hydrogen gas according to the chemical equation 2Na + 2H2O → 2NaOH + H2. The molar mass of sodium is 23 g/mol and of hydrogen gas is 2 g/mol. Thus, 2 moles of sodium is 46 grams (2 moles * 23 g/mol), which will produce 2 moles of hydrogen gas.
To determine how many moles of mercury (II) oxide (HgO) are needed to produce 125 g of oxygen (O₂), we first need to consider the decomposition reaction: 2 HgO(s) → 2 Hg(l) + O₂(g). From this equation, we see that 2 moles of HgO produce 1 mole of O₂. The molar mass of O₂ is approximately 32 g/mol, so 125 g of O₂ corresponds to about 3.91 moles (125 g ÷ 32 g/mol). Therefore, since 2 moles of HgO produce 1 mole of O₂, we need 7.82 moles of HgO (3.91 moles O₂ × 2 moles HgO/mole O₂).
1.35
The answer is 1 mole potassium chlorate.