answersLogoWhite

0


Best Answer

If the electronegativity is very different on one side than the other

User Avatar

Wiki User

12y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: How might a molecule have a very strong molecular dipole?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Chemistry

How might a molecule with two strong bond dipoles have no molecular dipole at all?

A molecule with two strong bond dipoles can have no molecular dipole if the bond dipoles cancel each other out by pointing in exactly opposite directions. For example, in carbon dioxide (a linear molecule), the carbon-oxygen bonds have a large dipole moment. However, because one dipole points to the left and the other points to the right, the dipoles cancel and overall there is no molecular dipole.


How might a molecule with two strong bond dipoles have no molecule dipole at all?

A molecule with two strong bond dipoles can have no molecular dipole if the bond dipoles cancel each other out by pointing in exactly opposite directions. For example, in carbon dioxide (a linear molecule), the carbon-oxygen bonds have a large dipole moment. However, because one dipole points to the left and the other points to the right, the dipoles cancel and overall there is no molecular dipole.


How might a molecule have a very strong molecule dipole?

This is possible because electrical charges (positive or negative) are non-uniform distributed in the molecule.


How might a molecule have a very strong dipole?

This is possible because electrical charges (positive or negative) are non-uniform distributed in the molecule.


Is benzil a polar molecule?

It might be tempting to think Benzil is a polar molecule because of the C=O bonds, but the high level of symmetry in the molecule cancels out any overall dipole and leaves the molecule non-polar.

Related questions

How might a molecule with two strong bond dipoles have no molecular dipole at all?

A molecule with two strong bond dipoles can have no molecular dipole if the bond dipoles cancel each other out by pointing in exactly opposite directions. For example, in carbon dioxide (a linear molecule), the carbon-oxygen bonds have a large dipole moment. However, because one dipole points to the left and the other points to the right, the dipoles cancel and overall there is no molecular dipole.


How might a molecule with two strong bond dipoles have no molecule dipole at all?

A molecule with two strong bond dipoles can have no molecular dipole if the bond dipoles cancel each other out by pointing in exactly opposite directions. For example, in carbon dioxide (a linear molecule), the carbon-oxygen bonds have a large dipole moment. However, because one dipole points to the left and the other points to the right, the dipoles cancel and overall there is no molecular dipole.


How might a molecule have a very strong molecule dipole?

This is possible because electrical charges (positive or negative) are non-uniform distributed in the molecule.


How might a molecule have a very strong dipole?

This is possible because electrical charges (positive or negative) are non-uniform distributed in the molecule.


Is benzil a polar molecule?

It might be tempting to think Benzil is a polar molecule because of the C=O bonds, but the high level of symmetry in the molecule cancels out any overall dipole and leaves the molecule non-polar.


Is benzoic acid polar or nonpolar?

It is non polar because although it has a carbonyl group that is polar (as the oxygen is more electronegative than the carbon and so forms a dipole), this polarity is outweighed by the hydrophobic nature of the organic part of the compound.


Why do greenhouse gases trap infrared radiation but not homonuclear molecules?

1) Absorption of IR radiation depends on the dipole moment of a molecule (which might be considered the tension on the shared electrons within the molecule). 2) In a homonuclear molecule (such as O2), the identical nuclei exert an identical pull on the shared electrons. The dipole moment is zero, and can interact with radiation of zero frequency and zero wavelength. Such radiation does not exist. 3) In a heteronuclear molecule such as water, the differing nuclei of oxygen and hydrogen exert an unequal pull on the shared electrons. This produces a non-zero dipole moment which is capable of interacting with infrared radiation, raising the molecule to a higher energy level. 4) Carbon dioxide (CO2) is a particular case. The oxygen atoms are at exactly opposite sides of the carbon. Although each side has a dipole moment, since the molecule is symmetrical it tends to cancel out. However, there is the possibility of movement of nuclei within the molecule. If the movement is symmetrical, there is no dipole moment. If the movement is asymmetrical, a dipole moment is temporarily produced. If there is infrared radiation present in the right orientation, interaction is possible. Therefore carbon dioxide is a fairly weak greenhouse gas. However, since it is being continually introduced into the atmosphere by human activity, its effect is being raised continually as well.


What are all the intermolecular forces when NACH3C00 is in water?

The compound is sodium acetate, and it is water soluble. When in water, it disocciates, forming Na+ ions and CH3COO- ions. These ions are then subject to water's strong polarity, so you will have some dipole-dipole interactions going on. Within those ions, you might have some dispersion forces going on as well, but those would be negligible.


When studying a molecule a chemist might make a model of the molecule to?

TO help visualize the molecule


Is a carbonate ion polar?

The carbonate ion, or CO3 2- has 24 electrons and its structure is trigonal planar. It is non-polar because the trigonal planar is symmetrical.


What effect might developments in computer hardware have on programming?

We are on the verge of molecular computing--we can already shift a molecule from 0 to 1 (and other states)--and we are waiting for programmers to catch up now! Apparently there are some interface issues, our sources say.


Are molecular and covalent bonds the same?

Molecular and covalent bonds aren't really the same. It is chemical bonds that hold molecules together. These chemical bonds might be called molecular bonds, and they come in two basic flavors: ionic bonds and covalent bonds. A molecular bond might be covalent, but it might be ionic, and that's the difference.