answersLogoWhite

0

E = hc/wavelength where E is energy; h is planks constant and wavelength is 663 nm=6.63x10^-7 mE = (6.626x10-34 Jsec)(3x10^8 m/sec)/6.63x10^-7 m

E = 2.998x10^-19 J

User Avatar

Wiki User

7y ago

What else can I help you with?

Continue Learning about Chemistry

How do you calculate the number of photons that corresponds to 600 nm of light?

λ - wavelength (NM) c - speed of light (3x108 m/s)= 162 000 nmf - Frequency (Hz)λ = c \ f600=162 000 nm\ f f=270 Hz


What is the longest wavelength in nm that can dissociate a molecule of HI?

The longest wavelength that can dissociate a molecule of HI is determined by the ionization energy of the molecule. For HI, which has an ionization energy of 10.09 eV, the corresponding longest wavelength would be about 123 nm.


What is the significance of the wavelength 680 nm in the context of photosynthesis?

The significance of the wavelength 680 nm in photosynthesis is that it corresponds to the peak absorption of light by chlorophyll a, the primary pigment responsible for capturing light energy during the light-dependent reactions of photosynthesis. This specific wavelength is optimal for driving the process of photosynthesis and converting light energy into chemical energy.


When an electron in atom changes energy states a photon is emitted If the photon has a wavelength of 550 nm how did the energy of the electron change?

The energy of the electron decreased as it moved to a lower energy state, emitting a photon with a wavelength of 550 nm. This decrease in energy corresponds to the difference in energy levels between the initial and final states of the electron transition. The energy of the photon is inversely proportional to its wavelength, so a longer wavelength photon corresponds to lower energy.


What is the wavelength of the hydrogen atom in the 2nd line of the Balmer series?

The wavelength of the hydrogen atom in the 2nd line of the Balmer series is approximately 486 nm. This corresponds to the transition of an electron from the third energy level to the second energy level in the hydrogen atom.

Related Questions

How do you calculate how much energy in kJ do 3.0 moles of photons all with a wavelength of 655 nm contain?

The energy is 18,263.10e4 joules.


How do you calculate the number of photons that corresponds to 600 nm of light?

λ - wavelength (NM) c - speed of light (3x108 m/s)= 162 000 nmf - Frequency (Hz)λ = c \ f600=162 000 nm\ f f=270 Hz


What units are photons in?

Photons are in action units joule-seconds.


What is the energy of 1 mol of blue photons at 400 nm wavelength?

The energy of a photon can be calculated using the equation E = hc/λ, where h is Planck's constant, c is the speed of light, and λ is the wavelength of the photon. Plugging in the values for h, c, and λ, we can calculate the energy of one photon at 400 nm. To find the energy of 1 mol of photons, we would multiply the energy of one photon by Avogadro's number.


What is the wavelength of a photon whose energy is twice that of a photon with a 580 nm wavelength?

Since the energy of a photon is inversely proportional to its wavelength, for a photon with double the energy of a 580 nm photon, its wavelength would be half that of the 580 nm photon. Therefore, the wavelength of the photon with twice the energy would be 290 nm.


How much energy in kJ do 3.0 moles of photons all with a wavelength of 655 nm contain?

To calculate the energy of photons, you can use the equation E = hc/λ, where h is Planck's constant (6.626 x 10^-34 J·s), c is the speed of light (3.00 x 10^8 m/s), and λ is the wavelength. First, convert the wavelength to meters (655 nm = 655 x 10^-9 m). Plug the values into the equation to find the energy per photon, and then multiply by Avogadro's number to get the total energy for 3.0 moles of photons.


How many electrons are emitted when calcium is flashed with light of wavelength 340 nm and intensity of 50 percent?

The number of electrons emitted when calcium is flashed with light of a certain wavelength and intensity depends on the photoelectric effect, which is related to the energy of the photons hitting the metal. Without the energy of the photons and the work function of calcium, we cannot determine the number of electrons emitted.


What is the energy of a photon with a wavelength of 500 nm in kilo electron volts (keV)?

The energy of a photon with a wavelength of 500 nm is approximately 2.48 keV.


Transition A produces light with a wavelength of 400 nm Transition B involves twice as much energy as A What wavelenth light does it produce?

Transition B produces light with half the wavelength of Transition A, so the wavelength is 200 nm. This is due to the inverse relationship between energy and wavelength in the electromagnetic spectrum.


Is the number of photons in one j of red light 650 nm greater than equal to or less than the number of photons in one j of blue light?

The number of photons in one joule of light is inversely proportional to their wavelength. Since red light at 650 nm has a longer wavelength than blue light, which typically has a shorter wavelength (around 450 nm), there will be more photons in one joule of red light than in one joule of blue light. Therefore, the number of photons in one joule of red light is greater than the number of photons in one joule of blue light.


What is the longest wavelength in nm that can dissociate a molecule of HI?

The longest wavelength that can dissociate a molecule of HI is determined by the ionization energy of the molecule. For HI, which has an ionization energy of 10.09 eV, the corresponding longest wavelength would be about 123 nm.


What is the numbers of photons of light with a wavelength of 4000 pm that provide 1 j of energy?

If a certain source emits radiation of a wavelength of 400 nm then the energy in a mole of photons of this radiation can be found using E = hc/w. The energy in kJ/mol of a mole of these photons is approximately 300 kJ / mole.