answersLogoWhite

0

With reference to the wikipedia article on this topic: The Balmer series predicts visible light wavelengths with high accuracy. The limiting transition wavelength predicted by the formula, inf -> 2, would be 364.6 nm.

User Avatar

Wiki User

11y ago

What else can I help you with?

Continue Learning about Chemistry

To which series would the emitted light belong if an electron in a hydrogen atom underwent a transition from level n 5 to level n 1?

The electron transition from n=5 to n=1 in a hydrogen atom corresponds to the Balmer series, specifically the Balmer-alpha line which is in the visible part of the spectrum.


Spectral lines of the Lyman and Balmer series do not overlap Verify this statement by calculating the longest wavelength associated with the Lyman series and shortest wavelength associated with the B?

Well, the different series represent different electronic transitions. But there is an important equation, the Rydberg formula which describes all of them.. I think you've learned of it since you mention the n values. This lead to the Bohr model of the hydrogen atom, which explained _why_ you had these levels.Or, almost. See, it turned out that those lines were not actually single lines, but several lines very close together.. And so they had to add more variables to describe how these levels-within-levels fit together.. and the answer to that eventually came from quantum mechanics.


What is the line spectrum of the hydrogen atom?

The line spectrum of the hydrogen atom consists of discrete lines at specific wavelengths corresponding to different electron transitions within the atom. These lines are a result of the energy differences between electron orbitals in the atom. Each line represents a specific electron transition, such as the Lyman, Balmer, and Paschen series.


Which model of an atom explains why excited hydrogen gas gives off certain colors of light?

The Bohr model of the atom explains why excited hydrogen gas gives off certain colors of light. When an electron transitions from a higher energy level to a lower one, it emits light with specific wavelengths corresponding to the difference in energy levels, producing the characteristic spectral lines of hydrogen such as the Balmer series.


How did balmer contribute to atomic theory?

Dalton's atomic postulations stated that:Elements are made of tiny particles called atoms.All atoms of a given element are identical.The atoms of a given element are different from those of any other element; the atoms of different elements can be distinguished from one another by their respective relative weights.Atoms of one element can combine with atoms of other elements to form chemical compounds; a given compound always has the same relative numbers of types of atoms.Atoms cannot be created, divided into smaller particles, nor destroyed in the chemical process; a chemical reaction simply changes the way atoms are grouped together.

Related Questions

Is Balmer series only present in hydrogen atom?

No, the Balmer series is observed in hydrogen-like atoms, which have one electron orbiting a nucleus. It consists of the spectral lines produced when the electron transitions from higher energy levels to the second energy level. Other atoms with similar electron configurations can also exhibit Balmer-like series in their spectra.


To which series would the emitted light belong if an electron in a hydrogen atom underwent a transition from level n 5 to level n 1?

The electron transition from n=5 to n=1 in a hydrogen atom corresponds to the Balmer series, specifically the Balmer-alpha line which is in the visible part of the spectrum.


What is the ratio of the wave length of last line of balmer and Lehman series?

The ratio of the wavelengths of the last line in the Balmer series to the last line in the Lyman series is 1:5. The Balmer series is associated with transitions to the n=2 energy level, while the Lyman series is associated with transitions to the n=1 energy level in the hydrogen atom.


Which spectrum of hydrogen consists of the Lyman Balmer and Paschen series?

The Lyman series consists of transitions to the n=1 state, the Balmer series to the n=2 state, and the Paschen series to the n=3 state in the hydrogen atom. Each series represents a specific range of wavelengths or frequencies of electromagnetic radiation emitted by hydrogen when electrons transition between these energy levels.


Spectral lines of the Lyman and Balmer series do not overlap Verify this statement by calculating the longest wavelength associated with the Lyman series and shortest wavelength associated with the B?

Well, the different series represent different electronic transitions. But there is an important equation, the Rydberg formula which describes all of them.. I think you've learned of it since you mention the n values. This lead to the Bohr model of the hydrogen atom, which explained _why_ you had these levels.Or, almost. See, it turned out that those lines were not actually single lines, but several lines very close together.. And so they had to add more variables to describe how these levels-within-levels fit together.. and the answer to that eventually came from quantum mechanics.


What is the line spectrum of the hydrogen atom?

The line spectrum of the hydrogen atom consists of discrete lines at specific wavelengths corresponding to different electron transitions within the atom. These lines are a result of the energy differences between electron orbitals in the atom. Each line represents a specific electron transition, such as the Lyman, Balmer, and Paschen series.


What does a hydrogen atom transitioning from the 2nd to the 1st excited state produce?

A hydrogen atom transitioning from the 2nd to the 1st excited state produces a photon of ultraviolet light. This ultraviolet light has a specific wavelength corresponding to the energy difference between the two states.


What is the formula parallel to rydberg's formula?

The formula parallel to Rydberg's formula used in Bohr's theory of the emission spectrum of the hydrogen atom is the Balmer Series. See related link for more information.


Why does hydrogen emit several colors in the Balmer series?

The particular colors emitted by an element reflect the exact amounts of energy that electrons orbiting the hydrogen nucleus give off when they drop from higher energy positions further from the nucleus to lower energy positions closer to the nucleus. Since hydrogen is so small and has so few orbitals, it has only four colors that it emits on the Balmer Series. Elements with high atomic numbers have many more orbitals and thus many more colors.


What was the effects of Neils Bohr's contribution to the atomic theory?

That led to know about the size of the atom and the reason of getting five different series of spectral lines in case of hydrogen such Lymann, Balmer, Pashcen, Bracket and Pfund.


What is the primary visible color of an emission nebula?

Emission nebulae can emit photons of many wavelengths, but the predominant color is red. They can also emit blue and pink colors (which are also part of the Balmer series of the hydrogen atom).


The Bohr model of the atom was able to explain the Balmer series because?

The Bohr model of the atom was able to explain the Balmer series by proposing that electrons orbit the nucleus in quantized, discrete energy levels. The transition of electrons between these levels corresponds to the emission of light at specific wavelengths, which gives rise to the spectral lines observed in the Balmer series.