The particular colors emitted by an element reflect the exact amounts of energy that electrons orbiting the hydrogen nucleus give off when they drop from higher energy positions further from the nucleus to lower energy positions closer to the nucleus. Since hydrogen is so small and has so few orbitals, it has only four colors that it emits on the Balmer Series. Elements with high atomic numbers have many more orbitals and thus many more colors.
The series of lines in the hydrogen spectrum that arises from transitions down to n=2 is known as the Balmer series. This series includes visible light emissions when electrons fall from higher energy levels (n≥3) to the n=2 level. The Balmer lines are characterized by wavelengths that fall within the visible range, producing colors such as red, green, and blue in the spectrum.
The absorption lines in the infrared portion of the spectrum of a star produced by hydrogen are primarily the Paschen series. These lines are transitions of electrons in hydrogen atoms from higher energy levels to the third energy level (n=3). Typical Paschen series lines in the infrared include Paschen-alpha at 1.875 μm and Paschen-beta at 1.282 μm.
The hydrogen line emission spectrum was discovered by physicists Johann Balmer, Johannes Rydberg, and Niels Bohr. They observed that hydrogen gas emitted specific wavelengths of light, which formed a distinct spectrum now known as the Balmer series.
The Balmer Series describes the transitions of electrons in a hydrogen atom from higher energy levels (n ≥ 3) down to the n = 2 level, resulting in visible light emissions. The n = 7 to n = 2 transition falls within the ultraviolet range, which is not part of the visible spectrum typically associated with the Balmer Series. Consequently, while such transitions can occur, they cannot be observed as part of the Balmer Series since they emit wavelengths that are outside the visible range. Thus, the n = 7 to n = 2 transition is not considered part of the series.
The n4-n2 transition of hydrogen is in the cyan, with wavelength of 486.1 nm. blue = als
The Balmer series consists of visible spectral lines emitted by hydrogen atoms when electrons transition from higher to lower energy levels. The colors in the Balmer series include red (656.3 nm), blue-green (486.1 nm), and violet (434.0 nm) wavelengths.
I believe it to be the Balmer Series.
The ratio of the first line of the Lyman series to the first line of the Balmer series in the hydrogen spectrum is 1:5.
The Balmer series is a series of spectral lines in the hydrogen spectrum that corresponds to transitions from energy levels n > 2 to the n=2 level. The longest wavelength in the Balmer series corresponds to the transition from n = ∞ to n = 2, known as the Balmer limit, which is approximately 656.3 nm.
The Balmer series is a set of spectral lines in the visible region of the electromagnetic spectrum of hydrogen. It consists of four lines in the visible light spectrum resulting from transitions in hydrogen's electron shell to the second energy level. The Balmer series is significant in understanding atomic structure and spectroscopy.
The Balmer series is a section of the hydrogen atomic emission line spectrum. They show the wavelengths of light emitted when electrons transition back to the n = 2 quantum level.
No, the Balmer series is observed in hydrogen-like atoms, which have one electron orbiting a nucleus. It consists of the spectral lines produced when the electron transitions from higher energy levels to the second energy level. Other atoms with similar electron configurations can also exhibit Balmer-like series in their spectra.
The shortest wavelength radiation in the Balmer series is the transition from the n=3 energy level to the n=2 energy level, which corresponds to the Balmer alpha line at 656.3 nm in the visible spectrum of hydrogen.
The series of lines in the hydrogen spectrum that arises from transitions down to n=2 is known as the Balmer series. This series includes visible light emissions when electrons fall from higher energy levels (n≥3) to the n=2 level. The Balmer lines are characterized by wavelengths that fall within the visible range, producing colors such as red, green, and blue in the spectrum.
The ratio of the wavelengths of the last line in the Balmer series to the last line in the Lyman series is 1:5. The Balmer series is associated with transitions to the n=2 energy level, while the Lyman series is associated with transitions to the n=1 energy level in the hydrogen atom.
The Lyman series consists of transitions to the n=1 state, the Balmer series to the n=2 state, and the Paschen series to the n=3 state in the hydrogen atom. Each series represents a specific range of wavelengths or frequencies of electromagnetic radiation emitted by hydrogen when electrons transition between these energy levels.
The wavelength of the hydrogen atom in the 2nd line of the Balmer series is approximately 486 nm. This corresponds to the transition of an electron from the third energy level to the second energy level in the hydrogen atom.