yes, CH4 has London dispersion forces because it is a non-polar molecule and non-polar molecules have London dispersion forces present in them. there are no other forces present in CH4.
The strongest attractive force between CH3OCH3 (dimethyl ether) and CH3CH2CH3 (propane) is due to London dispersion forces. These forces are present in all molecules and increase with molecular size and mass. Therefore, in this case, propane would have stronger London dispersion forces due to its larger size and mass compared to dimethyl ether.
The intermolecular force in pentane is London dispersion forces. These forces are temporary and arise from fluctuations in electron distribution within the molecules, causing temporary dipoles.
The intermolecular force in BF3 is London dispersion forces. This is because BF3 is a nonpolar molecule, so the only intermolecular force it experiences is the temporary weak attraction between temporary dipoles.
The intermolecular force in boron trichloride is London dispersion forces. Boron trichloride is a nonpolar molecule, so it only exhibits weak London dispersion forces between its molecules.
The type of intermolecular force present in Br2 is London dispersion forces. These forces are the weakest of the intermolecular forces and result from temporary fluctuations in electron distribution around the molecule, leading to a temporary dipole moment.
The strongest attractive force between CH3OCH3 (dimethyl ether) and CH3CH2CH3 (propane) is due to London dispersion forces. These forces are present in all molecules and increase with molecular size and mass. Therefore, in this case, propane would have stronger London dispersion forces due to its larger size and mass compared to dimethyl ether.
Dipole-Dipole and covalent sigma bond forces.
The only intermolecular forces in this long hydrocarbon will be dispersion forces.
London forces
London dispersion vander walls force
Yes!
London dispersion forces (instantaneous induced dipole-dipole interactions.)
The intermolecular force in pentane is London dispersion forces. These forces are temporary and arise from fluctuations in electron distribution within the molecules, causing temporary dipoles.
The intermolecular force in BF3 is London dispersion forces. This is because BF3 is a nonpolar molecule, so the only intermolecular force it experiences is the temporary weak attraction between temporary dipoles.
The intermolecular force in boron trichloride is London dispersion forces. Boron trichloride is a nonpolar molecule, so it only exhibits weak London dispersion forces between its molecules.
The type of intermolecular force present in Br2 is London dispersion forces. These forces are the weakest of the intermolecular forces and result from temporary fluctuations in electron distribution around the molecule, leading to a temporary dipole moment.
Helium is a noble gas, so it exhibits weak dispersion forces, also known as London dispersion forces, as its primary intermolecular force. These forces arise from temporary fluctuations in electron distribution around the atom.