No, the conjugate acid of most strong bases is water.
Strong acids and bases dissociate completely in water. Strong acids produce a pH of less than 3 and form weak conjugate bases. Strong bases produce a pH greater than 10 and form a weak conjugate acid.
The conjugate pair for a strong base is water (H2O) and the hydroxide ion (OH-). When the strong base dissociates in water, it forms the hydroxide ion, and the water molecule acts as its conjugate acid.
If acid is strong then its conjugate base must be weak, if conjugate base is strong it again accept the H+ ions so acid can neither be strong, similarly if base is strong its conjugate acid must be weak.
A weak acid/base will have a stronger conjugate base/acid. The conjugate acids/bases of strong bases/acids are very weak because they have no attraction to protons or hydroxides, which is why the reaction shifts all the way to the right and the Ka/b is large.
The strength of a weak acid is inversely related to the strength of its conjugate base. If an acid is weak, its conjugate base will be stronger because the weaker the acid, the more easily it will give up its proton to form the conjugate base. Conversely, a stronger acid will have a weaker conjugate base.
Strong acids and bases dissociate completely in water. Strong acids produce a pH of less than 3 and form weak conjugate bases. Strong bases produce a pH greater than 10 and form a weak conjugate acid.
The conjugate pair for a strong base is water (H2O) and the hydroxide ion (OH-). When the strong base dissociates in water, it forms the hydroxide ion, and the water molecule acts as its conjugate acid.
If acid is strong then its conjugate base must be weak, if conjugate base is strong it again accept the H+ ions so acid can neither be strong, similarly if base is strong its conjugate acid must be weak.
A weak acid/base will have a stronger conjugate base/acid. The conjugate acids/bases of strong bases/acids are very weak because they have no attraction to protons or hydroxides, which is why the reaction shifts all the way to the right and the Ka/b is large.
The strength of a weak acid is inversely related to the strength of its conjugate base. If an acid is weak, its conjugate base will be stronger because the weaker the acid, the more easily it will give up its proton to form the conjugate base. Conversely, a stronger acid will have a weaker conjugate base.
NaHCO3 is a weak base, with a conjugate acid of H2CO3+.
No, a strong base does not have a strong conjugate acid. Strong bases typically have weak conjugate acids since the strength of an acid-base pair is inversely related - strong acids have weak conjugate bases, and strong bases have weak conjugate acids.
The conjugate base results after the acidic hydrogen has been removed from the acid. For instance, if we look at water (a weak acid), then the conjugate base is the hydroxide anion, a strong base. The stronger the acid, the weaker the conjugate base, and vice versa.
Assuming you are asking about the base I-, the conjugate acid is HI, hydroiodic acid. Since hydroiodic acid is a strong acid, it can be concluded that iodide (I-) is a weak conjugate base.
Oxalic acid is stronger than malonic acid due to the presence of two carboxylic acid functional groups that can readily dissociate to release two protons, making it a stronger acid. Malonic acid has only one carboxylic acid group, so it can release only one proton, making it a weaker acid compared to oxalic acid.
HSO4- is a weak acid. It is the conjugate base of sulfuric acid (H2SO4), which is a strong acid. However, HSO4- itself is a weak acid and partially dissociates in water.
b) The conjugate acid of a weak base is a weak acid. When a base accepts a proton to form its conjugate acid, it tends to be a weak acid because it does not easily donate a proton back. This relationship is governed by the principles of acid-base equilibrium.