no.
The electron pair geometry of C2H2 is linear.
The balanced chemical equation for the reaction C2H2 + H2 → C2H6 is: C2H2 + 2H2 → C2H6
2C2H2 + 5O2 ------------->2H2O + 4CO21 mole Of C2H2 = 26.04g, O2 = 32g, H2O = 44.01g, CO2 = 18.01g2moleC2H2 -------------> 4moleCO22x(26.04g) -------------> 4x(18.01g)52.08 g C2H2 ---------> 176.04 g CO230000g C2H2 ---------> ?? =176.04x30000g/52.08 =101405.53 gAnswer=101405.53 gram of CO2
CaC2 + 2H2O ==> C2H2 + Ca(OH)2moles of C2H2 produced = moles of Ca(OH)2 produced (1:1 mole ratio is the stoichiometry)moles of Ca(OH)2 produced = 7 g x 1mol/74.1 g = 0.0945 molesmoles C2H2 = 0.0945 molesgrams C2H2 = 0.0945 moles x 26 g/mole = 2.46 grams = 2 grams to 1 sig fig
C2H2 (acetylene) is the more acidic compound compared to C2H4 (ethylene) due to the presence of a triple bond between carbon atoms in acetylene, making it more willing to donate a proton and behave as an acid.
No, is a stable neutral compound with the formula C2H2.
C2H2 (acetylene) is a linear molecule.
yep!! C2H2 is a pure subsatnce
The electron pair geometry of C2H2 is linear.
The chemical equation for the reaction of acetylene (C2H2) with two molecules of Br2 (bromine) is: C2H2 + 2Br2 → C2H2Br4
The balanced chemical equation for the reaction C2H2 + H2 → C2H6 is: C2H2 + 2H2 → C2H6
2C2H2 + 5O2 ------------->2H2O + 4CO21 mole Of C2H2 = 26.04g, O2 = 32g, H2O = 44.01g, CO2 = 18.01g2moleC2H2 -------------> 4moleCO22x(26.04g) -------------> 4x(18.01g)52.08 g C2H2 ---------> 176.04 g CO230000g C2H2 ---------> ?? =176.04x30000g/52.08 =101405.53 gAnswer=101405.53 gram of CO2
C2H2 and CO2 are linear molecules and are non polar.
Linear.
CaC2 + 2H2O ==> C2H2 + Ca(OH)2moles of C2H2 produced = moles of Ca(OH)2 produced (1:1 mole ratio is the stoichiometry)moles of Ca(OH)2 produced = 7 g x 1mol/74.1 g = 0.0945 molesmoles C2H2 = 0.0945 molesgrams C2H2 = 0.0945 moles x 26 g/mole = 2.46 grams = 2 grams to 1 sig fig
How many moles of CO2 are produced when 2.1 mol of C2H2 react?
C2H2 (acetylene) is the more acidic compound compared to C2H4 (ethylene) due to the presence of a triple bond between carbon atoms in acetylene, making it more willing to donate a proton and behave as an acid.