The term half life describes the rate at which the isotopes of a particular atom decay. Thus, if you have a lump of Uranium 238 (U238), then the atoms in the lump will decay at the same rate as the half life. If that lump was created four billion years ago and it consisted of 100% U 238, today the lump would be half U238 and half something else, mostly lead. That would go for both the atoms and the whole lump.
If the lump consisted of 10% U238 today it would consist of 5% U238, and 95% something else. The fact that the U238 has a half life of 4 billion years only affects the Uranium and nothing else.
The correct answer is: Half-lives are not affected by temperature.
A. Different atoms of the same nuclide have different half-lives.B. each radioactive nuclide has its own half-life.C. All radioactive nuclides of an element have the same half-life.D. All radioactive nuclides have the same half-life.
By noon, 4.5 half-lives have passed since 6:30 am (5.5 hours total). With a half-life of 110 min, fluorine-18 would have decayed 4.5 times, reducing the initial 200 mg. So, the amount of active isotope remaining would be 200 mg * (1/2)^4.5.
The antonym for isotope is non-isotope. An isotope refers to atoms of the same element with different numbers of neutrons, whereas non-isotope would refer to atoms of the same element having the same number of neutrons.
Bismuth has recently been found to have a no stable isotope and has a half-life of 4.6 x 10^19 years. Also, the simple hydrogen atom (a single proton), is theorized to decay at a rate of 6.6 x 10^33 years. So far all tests to observe a proton decay have failed.
The correct answer is: Half-lives are not affected by temperature.
The length of time for the second half-life is the same as the first half-life. Each half-life represents the time it takes for half of the radioactive atoms in a sample to decay. This process continues exponentially with each subsequent half-life.
An isotope of a chemical element is an atom that has the same number of protons (this also means this atom has the same atomic number) and electrons, but has a different numbers on neutrons. The isotope is radioactive if it has too many neutrons in the nucleus and because of this the isotope is unstable. The half-life of a radioactive isotope is a time period. When the isotope is at the end of the period it's weight will be the half of the starter weight.
A. Different atoms of the same nuclide have different half-lives.B. each radioactive nuclide has its own half-life.C. All radioactive nuclides of an element have the same half-life.D. All radioactive nuclides have the same half-life.
Not exactly sure what you mean about "aluminum's half life equation." Exponential decay, from where we get the half-life equation from, has nothing to do with mass, atomic number, etc... and therefore has nothing to do with any particular isotope.
The half-life is a fixed period of time: the average time it will take for one of every two atoms to decay to another isotope or element. So no matter how much of a given radioactive isotope that you start with, only one-half of it will still be that isotope after a single half-life period. Likewise only half of that remaining material will be the same isotope after another half-life period. Of course, some of the atoms will be decaying all the time, so the half-life is only a convenient way to define the quantity at any given time.
The half-life is a fixed period of time: the average time it will take for one of every two atoms to decay to another isotope or element. So no matter how much of a given radioactive isotope that you start with, only one-half of it will still be that isotope after a single half-life period. Likewise only half of that remaining material will be the same isotope after another half-life period. Of course, some of the atoms will be decaying all the time, so the half-life is only a convenient way to define the quantity at any given time.
After 10 days, 1/2 of the original isotope will remain since its half-life is 5 days. This means 6kg of the original isotope will remain after 1 half-life, which remains the same after 10 days since another half-life has passed.
The half-life is a fixed period of time: the average time it will take for one of every two atoms to decay to another isotope or element. So no matter how much of a given radioactive isotope that you start with, only one-half of it will still be that isotope after a single half-life period. Likewise only half of that remaining material will be the same isotope after another half-life period. Of course, some of the atoms will be decaying all the time, so the half-life is only a convenient way to define the quantity at any given time.
No, the size of a radioactive sample does not affect its half-life. The half-life is a characteristic property of a radioactive isotope, defined as the time it takes for half of the radioactive atoms in a sample to decay. This property is intrinsic to the isotope itself and remains constant regardless of the amount of material present. Thus, whether you have a small or large sample, the half-life will remain the same.
The number of neutrons in the nucleus, the number of protons is the same for each isotope of a given element.
Because each isotope of an element has a mass different from any other isotope of the same element, and the atomic mass of an element is an average, weighted by the proportion of each isotope, in the naturally occurring element.