No, rainbow is not by T-effect but adressed to reflection and refraction of light by (small) water droplets. Cf. Related links for Wikipedia-explanation: [en.wikipedia.org/wiki/Rainbow#Explanation]
These mixtures are colloids or very fine suspensions.
The Tyndall effect is the phenomenon where light is scattered by particles in a colloidal solution or suspension, making the beam visible. If a solution is showing the Tyndall effect, it indicates the presence of suspended particles that are large enough to scatter light. In the case of soap, the Tyndall effect may be observed when light is scattered by micelles or other structures in the soap that are similar in size to the wavelength of visible light.
No, rubber does not show the Tyndall effect. The Tyndall effect is the scattering of light by colloidal particles or particles suspended in a transparent medium, which causes the light to be visible as a beam. Rubber does not have the scattering properties required to exhibit this effect.
yes.because when we are vigorous shaking the solution of two dissimilar liquids it it ii mix for 1 or 2 seconds .let it be the solution for 1 or 2 minutes it ll show the Tyndall effect ...so we can observe Tyndall effect in an emulsion solution .
The Tyndall effect can be used to distinguish between a colloid and a solution by shining a light through the substance. In a colloid, the light will scatter due to the larger particles present, making the beam visible. In a solution, the light will pass straight through without scattering, making the beam less visible.
tyndall effect
tyndall effect
The visible beam of headlights in fog is caused by the Tyndall effect . The water droplets scatter the light, making the headlight beams visible.
The Tyndall effect, or Tyndall scattering, was named after 19th century physicist John Tyndall. It has to do with light scattering through particles in a suspension.
The scattering of light by a colloid is called Tyndall effect. This effect occurs when light is scattered by particles within a colloid, making the beam of light visible due to the reflection and absorption of light by the colloidal particles.
The Tyndall effect is specific for colloids, not for solutions.
Yes, it does because tyndall effect is caused by scattering of light by small particles in colloidal solutions in transparent medium. (colloid means the mixture of particles less than size of particles in suspension)
No, a sugar solution does not typically show the Tyndall effect. The Tyndall effect is the scattering of light by colloidal particles, but sugar molecules are generally too small to scatter light effectively.
The key word here is "solution". Solutions do not exhibit the Tyndall effect; if something does exhibit the Tyndall effect, that's a good indication that it is not a solution.
No, Michael Faraday did not discover the Tyndall effect. The Tyndall effect refers to the scattering of light by colloidal particles in a transparent medium and was actually named after the Irish physicist John Tyndall, who first explained the phenomenon in the 19th century.
These mixtures are colloids or very fine suspensions.
The Tyndall effect is used commercially to determine the size and density of particles in aerosols.