# Gases, liquids, or solids (made of molecules) # Low melting and boiling points # Poor electrical conductors in all phases # Many soluble in nonpolar liquids but not in water Pretty sure this right
Covalent-network solids are substances in which atoms are bonded together by strong covalent bonds in an extended network structure. This results in materials with high melting points, hardness, and electrical insulating properties. Examples include diamond and silicon carbide.
Covalent solids and molecular solids typically have lower melting points than ionic solids. This is because the intermolecular forces holding covalent and molecular solids together are generally weaker than the electrostatic forces binding ionic solids, resulting in lower energy requirements for melting.
Network solids have a three-dimensional structure with strong covalent bonds throughout, leading to a higher melting point compared to molecular solids which have weaker intermolecular forces. In network solids, a larger amount of energy is required to break the extensive network of covalent bonds, resulting in a higher melting point.
Molecular solids
Covalent bonding can occur in solids, such as in diamond where each carbon atom forms covalent bonds with four other carbon atoms. However, in some solids, like metals and ionic compounds, the bonding is mainly metallic or ionic, respectively, due to the different types of interactions between atoms.
Covalent-network solids are substances in which atoms are bonded together by strong covalent bonds in an extended network structure. This results in materials with high melting points, hardness, and electrical insulating properties. Examples include diamond and silicon carbide.
It can be categorised into -Ionic -Covalent molecular -Metallic -Covalent network
Covalent compounds can be solids, liquids or gases.
The solid carbon compounds are mostly molecular solids.
All solids do no have same properties. They possess different properties.
Covalent solids and molecular solids typically have lower melting points than ionic solids. This is because the intermolecular forces holding covalent and molecular solids together are generally weaker than the electrostatic forces binding ionic solids, resulting in lower energy requirements for melting.
Covalent solids generally have lower melting points than ionic solids. This is because covalent solids are made up of discrete molecules held together by relatively weak intermolecular forces, whereas ionic solids are made up of ions held together by strong electrostatic forces. The weaker intermolecular forces in covalent solids require less energy to overcome, resulting in a lower melting point.
Network solids have a three-dimensional structure with strong covalent bonds throughout, leading to a higher melting point compared to molecular solids which have weaker intermolecular forces. In network solids, a larger amount of energy is required to break the extensive network of covalent bonds, resulting in a higher melting point.
Covalent.. A+
Molecular solids
Covalent bonding can occur in solids, such as in diamond where each carbon atom forms covalent bonds with four other carbon atoms. However, in some solids, like metals and ionic compounds, the bonding is mainly metallic or ionic, respectively, due to the different types of interactions between atoms.
Ionic solids tend to be the strongest because they have strong electrostatic forces between positively and negatively charged ions. Metallic solids have a delocalized electron sea that allows for high conductivity but not necessarily the same level of strength as ionic solids. Covalent solids have strong covalent bonds but may not be as strong as ionic solids due to the lack of strong electrostatic interactions.