It isn't possible to completely make a Lewis structure in this format, but here's the idea:
CH3COO- is acetic acid, the acid in vinegar. The two carbons are bonded, with one carbon having 3 hydrogens around it. The other carbon has a double bond with one oxygen, and a single bond with the other oxygen. The second oxygen has a full complement of 8 electrons and gets the negative charge. The backbone of the structure might look like:
H:C:C::O
Resonance structure.
The Lewis dot structure for germanium (Ge) is: Ge: :Ge:
The Lewis structure of the compound CCLO is as follows: CCCl-O.
The formal charge of the NCO Lewis structure is zero.
No, not exactly. It is an ionic compound so it would not have a Lewis dot structure. However, the carbonate anion, CO3^2- does have a Lewis dot structure.
Acetate
Resonance structure.
The Lewis dot structure for germanium (Ge) is: Ge: :Ge:
The Lewis structure of the compound CCLO is as follows: CCCl-O.
The formal charge of the NCO Lewis structure is zero.
No, not exactly. It is an ionic compound so it would not have a Lewis dot structure. However, the carbonate anion, CO3^2- does have a Lewis dot structure.
The molecular geometry of the BR3 Lewis structure is trigonal planar.
The Lewis structure was created by American chemist Gilbert N. Lewis in 1916. Lewis proposed using dots to represent the valence electrons of an atom in order to show how atoms bond together in molecules.
Sulfur can form a maximum of six bonds in a Lewis structure.
The bond angle in the CHCl3 Lewis structure is approximately 109.5 degrees.
The formal charge of sulfur in the SO2 Lewis structure is 0.
The SO2 molecule has a bent structure according to its Lewis diagram.