answersLogoWhite

0

The ideal gas law, (PV = nRT), can be used here. The initial pressure is proportional to the initial number of moles, and the final pressure is proportional to the total number of moles. Therefore, the ratio of final pressure to initial pressure is the ratio of the total number of moles of gas at the final conditions to the number of moles initially in the container.

User Avatar

AnswerBot

1y ago

What else can I help you with?

Continue Learning about Chemistry

What effects does temperature have on pressure in a closed container?

Well the temperature of a gas in a container is directly proportional to the pressure of the gas & according to the kinetic theory of gases (viewing gases as made of particles which are in constant random motion) the change in pressure with respect to temperature is given by 2mvx where m is mass and vx the x-coordinate of the initial velocity of the particle. (looking at it as the molecules are colliding with the walls of the container along an axis, x in this case). this proportionality is the basis (implicitly) of Charles's law, Gay-Lussac's law and Boyle's law.


A gas with a volume of 4.00 L at a pressure of 205 kPa is allowed to expand to a volume of 12.0 L. What is the pressure in the container if the temperature remains constant?

Using the ideal gas law (PV = nRT) and assuming the number of moles and temperature remain constant, the initial and final pressures can be related by P1V1 = P2V2. Plugging in the values, the final pressure in the container after expansion to 12.0 L is 68.3 kPa.


Is it possible for a balloon with an initial pressure of 200.0kPa to naturally expand four times its initial volume when the temperature remains constant and atmospheric pressure is 101.3kPa?

No, it is not possible for the balloon to naturally expand four times its initial volume while the temperature remains constant. According to Boyle's Law, at constant temperature, the pressure and volume of a gas are inversely proportional. Since the atmospheric pressure remains constant, the balloon's pressure of 200.0kPa would need to increase to expand, which cannot happen at constant temperature.


What is the temperature of a soda if you put it in ice for 30 mins?

The temperature of the soda will decrease due to the ice's lower temperature, but it will not reach the same temperature as the ice. The rate of cooling will depend on various factors such as the initial temperature of the soda, the amount of ice, and the thermal conductivity of the container.


A tire has pressure of 325 kpa at 10c if the temperature of the tire rises to 50c and the volume remains constantwhat is new pressure?

Using the ideal gas law, we can calculate the new pressure using the formula P1/T1 = P2/T2. Plugging in the initial pressure (325 kPa), initial temperature (10°C), and new temperature (50°C), we can solve for the new pressure. The new pressure would be approximately 541 kPa.

Related Questions

Which container contains water with lower initial temperature?

You think probable to a Dewar container.


What effects does temperature have on pressure in a closed container?

Well the temperature of a gas in a container is directly proportional to the pressure of the gas & according to the kinetic theory of gases (viewing gases as made of particles which are in constant random motion) the change in pressure with respect to temperature is given by 2mvx where m is mass and vx the x-coordinate of the initial velocity of the particle. (looking at it as the molecules are colliding with the walls of the container along an axis, x in this case). this proportionality is the basis (implicitly) of Charles's law, Gay-Lussac's law and Boyle's law.


A gas with a volume of 4.00 L at a pressure of 205 kPa is allowed to expand to a volume of 12.0 L. What is the pressure in the container if the temperature remains constant?

Using the ideal gas law (PV = nRT) and assuming the number of moles and temperature remain constant, the initial and final pressures can be related by P1V1 = P2V2. Plugging in the values, the final pressure in the container after expansion to 12.0 L is 68.3 kPa.


What is Charles law and boyles law?

BOYLES LAW The relationship between volume and pressure. Remember that the law assumes the temperature to be constant. or V1 = original volume V2 = new volume P1 = original pressure P2 = new pressure CHARLES LAW The relationship between temperature and volume. Remember that the law assumes that the pressure remains constant. V1 = original volume T1 = original absolute temperature V2 = new volume T2 = new absolute temperature P1 = Initial Pressure V1= Initial Volume T1= Initial Temperature P2= Final Pressure V2= Final Volume T2= Final Temperature IDEAL GAS LAW P1 = Initial Pressure V1= Initial Volume T1= Initial Temperature P2= Final Pressure V2= Final Volume T2= Final Temperature Answer BOYLES LAW The relationship between volume and pressure. Remember that the law assumes the temperature to be constant. or V1 = original volume V2 = new volume P1 = original pressure P2 = new pressure CHARLES LAW The relationship between temperature and volume. Remember that the law assumes that the pressure remains constant. V1 = original volume T1 = original absolute temperature V2 = new volume T2 = new absolute temperature P1 = Initial Pressure V1= Initial Volume T1= Initial Temperature P2= Final Pressure V2= Final Volume T2= Final Temperature IDEAL GAS LAW P1 = Initial Pressure V1= Initial Volume T1= Initial Temperature P2= Final Pressure V2= Final Volume T2= Final Temperature


What if gas is in a sealed container has a pressure of 50 k pa at 300 k what will the pressure be if the temperature rises 360 k?

60kpa


What will be the final temperature of a fixed quantity of air originally at 22 C in a rigid container if its pressure increases from 730 mm Hg to 795 mm Hg?

To determine the final temperature of the air in the rigid container, you would need to know the volume of the container and the gas constant for air. Using the ideal gas law (PV = nRT), you can calculate the initial and final temperatures. Without this information, it is not possible to determine the final temperature of the air in the container accurately.


How to calculate final pressure when given initial pressure and initial temp and also final temp and know that it's a constant volume process from initial state?

You can calculate pressure and temperature for a constant volume process using the combined gas law.


Is it possible for a balloon with an initial pressure of 200.0kPa to naturally expand four times its initial volume when the temperature remains constant and atmospheric pressure is 101.3kPa?

No, it is not possible for the balloon to naturally expand four times its initial volume while the temperature remains constant. According to Boyle's Law, at constant temperature, the pressure and volume of a gas are inversely proportional. Since the atmospheric pressure remains constant, the balloon's pressure of 200.0kPa would need to increase to expand, which cannot happen at constant temperature.


Describe the relationship between temperature and pressure?

The relationship between temperature and pressure is not named after a specific person, like Boyle's or Charles' Laws, but states that the relationship between the temperature and pressure of a gas (usually as observed in a rigid container) is direct. Therefore, as temperature increases, pressure does too.This is Gay-Lussac's law.The temperature and pressure of gasses are related. As the pressure increases the temperature also increases, and vice verse. As the pressure decreases the temperature gets colder.The ideal-gas law may be expressed as PV=nRT.Absolute temperature TNumber of moles (a measure of the number of molecules) nVolume VPressure PRydberg's constant R (some value that makes the numbers and the units work)Obviously, from the equation, you could half the temperature and keep the pressure the same, if, for example, you cut the volume in half. Or you could half the temperature and double the number of moles, and the pressure wouldn't change.


How valid is the assumption that the initial temperature of the steam is 100 degrees celsius?

The assumption that the initial temperature of steam is 100 degrees Celsius is generally valid when referring to saturated steam at atmospheric pressure. However, it's important to consider that the temperature of steam can vary depending on the pressure or if it is superheated. Additional information or measurements may be needed to confirm the exact initial temperature of the steam in a specific scenario.


What is the temperature of a soda if you put it in ice for 30 mins?

The temperature of the soda will decrease due to the ice's lower temperature, but it will not reach the same temperature as the ice. The rate of cooling will depend on various factors such as the initial temperature of the soda, the amount of ice, and the thermal conductivity of the container.


What is the initial pressure of H2S gas in the flask with a Kp value of 0.120 at 25 deg C?

To determine the initial pressure of H2S gas in the flask, we need the total pressure and the partial pressure of another gas in equilibrium with H2S. Without the partial pressure of the other gas, we can't determine the initial pressure of H2S with just the Kp value and temperature provided.