C6H12O6 Molecular Weight: 180
This is also known now as Glucose (Sugar).
^^ this isn't completely correct... yes dextrose is a sugar but its not the same as glucose at all... (glucose, fructose, sucrose, and dextrose are all sugars but they have different chemical make-ups)
i don't know the exact answer but i don't want you to be misled
Molecular formulas that are also empirical formulas include compounds like water (H2O), methane (CH4), and hydrogen peroxide (H2O2). In these cases, the molecular formula is the same as the empirical formula because the compounds consist of only one type of atom.
The empirical formula is the smallest unit which shows the different atoms in their correct ratios. You find it by taking out any common factor from the numbers. In this case all three numbers divide by 11, so the empirical formula is CH2O. In practice, we usually determine the empirical formula from experiment (hence the name), then use it with other information to derive the molecular formula.
In order to find molecular formula from empirical formula, one needs to know the molar mass of the molecular formula. Then you simply divide the molar mass of the molecular formula by the molar mass of the empirical formula to find out how many empirical formulae are in the molecular formula. Then you multiply the subscripts in the empirical formula by that number.
The molecular formula of sucrose is C12H22O11.
The empirical formula of a compound shows the lowest whole number ratio of the elements in that compound; AKA simplest formula. The molecular formula describes the number of atoms of each element that make up the molecule or formula unit; AKA actual formula
An empirical formula is a brutto formula; a molecular formula explain the structure of a molecule.
The empirical formula for maltose is C12H22O11, for sucrose it is C12H22O11, and for lactose it is C12H22O11. This means that all three sugars have the same empirical formula.
A molecular formula is identical to the empirical formula, and is based on quantity of atoms of each type in the compound.The relationship between empirical and molecular formula is that the empirical formula is the simplest formula, and the molecular can be the same as the empirical, or some multiple of it. An example might be an empirical formula of C3H8. Its molecular formula may be C3H8 , C6H16, C9H24, etc. Looking at it the other way, if the molecular formula is C6H12O6, the empirical formula would be CH2O.
A molecular formula is identical to the empirical formula, and is based on quantity of atoms of each type in the compound.The relationship between empirical and molecular formula is that the empirical formula is the simplest formula, and the molecular can be the same as the empirical, or some multiple of it. An example might be an empirical formula of C3H8. Its molecular formula may be C3H8 , C6H16, C9H24, etc. Looking at it the other way, if the molecular formula is C6H12O6, the empirical formula would be CH2O.
A molecular formula is identical to the empirical formula, and is based on quantity of atoms of each type in the compound.The relationship between empirical and molecular formula is that the empirical formula is the simplest formula, and the molecular can be the same as the empirical, or some multiple of it. An example might be an empirical formula of C3H8. Its molecular formula may be C3H8 , C6H16, C9H24, etc. Looking at it the other way, if the molecular formula is C6H12O6, the empirical formula would be CH2O.
A molecular formula is identical to the empirical formula, and is based on quantity of atoms of each type in the compound.The relationship between empirical and molecular formula is that the empirical formula is the simplest formula, and the molecular can be the same as the empirical, or some multiple of it. An example might be an empirical formula of C3H8. Its molecular formula may be C3H8 , C6H16, C9H24, etc. Looking at it the other way, if the molecular formula is C6H12O6, the empirical formula would be CH2O.
Molecular formulas that are also empirical formulas include compounds like water (H2O), methane (CH4), and hydrogen peroxide (H2O2). In these cases, the molecular formula is the same as the empirical formula because the compounds consist of only one type of atom.
The empirical formula is the smallest unit which shows the different atoms in their correct ratios. You find it by taking out any common factor from the numbers. In this case all three numbers divide by 11, so the empirical formula is CH2O. In practice, we usually determine the empirical formula from experiment (hence the name), then use it with other information to derive the molecular formula.
In order to find molecular formula from empirical formula, one needs to know the molar mass of the molecular formula. Then you simply divide the molar mass of the molecular formula by the molar mass of the empirical formula to find out how many empirical formulae are in the molecular formula. Then you multiply the subscripts in the empirical formula by that number.
The molecular formula of sucrose is C12H22O11.
An empirical formula is elaborated after the chemical analysis of a compound; for a structural formula more in depth studies are necessary.
Any molecular formula where the subscripts do not have a common factor that can divide them all. For example: CH4 (methane) is a molecular formula that is also an empirical formula because there is no number (other then one) that can divide both the 4 and the 1. Take ethane as another example. It hasn't the empirical formula which is similar to the molecular formula.