2,1,0,-1,-2 are the possible values of ml for an electron in d orbital.
A 3s electron
The third quantum number, ml, describes the orientation of an orbital in space. It specifies the orbital's orientation relative to the x, y, and z axes. It can have integer values ranging from -l to +l.
There can be two electrons with those quantum numbers in an atom. Each electron is completely described by four quantum numbers. The one that's missing in the list provided is ms, which can have only two possible values (+1/2 and -1/2).
The last electron in a copper atom has the quantum numbers n=3, l=2, ml=0, and ms=+1/2. The quantum numbers represent the energy level (n), sublevel (l), orbital orientation (ml), and electron spin (ms) of the electron, respectively.
The quantum number that indicates the position of an orbital is the magnetic quantum number. The number of different sublevels within each energy level of an atom is equal to the value of the principle quantum number.
ml = -1
n : 2 l : 1 ml : -1, 0, or 1
For the d orbital, the value of l is 2 and the value of ml is - l to + l, so the values of ml would be -2, -1, 0, +1, +2. So, the maximum value would be +2.
A 3s electron
The third quantum number, ml, describes the orientation of an orbital in space. It specifies the orbital's orientation relative to the x, y, and z axes. It can have integer values ranging from -l to +l.
ml=0
ml = 0
The measured component of the orbital magnetic dipole moment of an electron with quantum number (a) ml is given by -μBsqrt(l(l+1) - m_l*(m_l-1)), and with quantum number (b) ml is given by -μB*m_l. Here, μB is the Bohr magneton, l is the angular momentum quantum number, and m_l is the magnetic quantum number.
The quantum number ml = -1 represents the orientation of an electron's orbital in space. It indicates that the orbital is aligned along the y-axis in a three-dimensional coordinate system. This quantum number specifies the specific orientation of the orbital subshell within a given energy level.
The allowable sets of quantum numbers are n (principal quantum number), l (azimuthal quantum number), ml (magnetic quantum number), and ms (spin quantum number). n determines the energy level and size of an orbital, l determines the shape of an orbital, ml determines the orientation of an orbital in space, and ms determines the spin of an electron in an orbital. Each set of quantum numbers must follow specific rules based on the principles of quantum mechanics.
There can be two electrons with those quantum numbers in an atom. Each electron is completely described by four quantum numbers. The one that's missing in the list provided is ms, which can have only two possible values (+1/2 and -1/2).
The magnetic quantum number ml depends on the orbital angular momentum (azimuthal) quantum number, l, which in turn depends on the principal quantum number, n. The orbital angular momentum (azimuthal) quantum number, l, runs from 0 to (n-1) where n is the principal quantum number. l= 0 is an s orbital, l= 1 is a p subshell, l= 2 is a d subshell, l=3 is an f subshell. The magnetic quantum number, ml, runs from -l to +l (sorry this font is rubbish the letter l looks like a 1) so for an f orbital the values are -3. -2, -1, 0, +1, +2, +3, so 7 f orbitals in total. ml "defines " the shape of the orbital and the number within the subshell.