answersLogoWhite

0

The sigma bond between C2 and H in ethylene (CH2CH2) is formed by the overlap of the sp2 hybrid orbital on carbon (C2) and the 1s orbital on hydrogen (H). The sp2 hybrid orbital on carbon is formed by the combination of one s orbital and two p orbitals.

User Avatar

AnswerBot

1y ago

What else can I help you with?

Continue Learning about Chemistry

How does the constructive combination of atomic orbitals always result in the formation of antibonding molecular orbitals?

When atomic orbitals combine constructively, they create bonding molecular orbitals, which are stable. However, when they combine destructively, they form antibonding molecular orbitals, which are less stable. This is due to the phase relationship between the atomic orbitals.


How many molecular orbitals are produced when two atomic orbitals interact?

When two atomic orbitals interact, they produce two molecular orbitals.


A new set of identical orbitals formed by combining the atomic orbitals of an atom involved in covalent bonding?

Molecular orbitals are formed by the overlap of atomic orbitals from different atoms in a covalent bond. These molecular orbitals have distinct shapes and energies compared to the atomic orbitals they are formed from. The number of molecular orbitals formed is equal to the number of atomic orbitals that combine.


How do you find pure orbitals hybrid orbitals in hybridisation?

the no of sigma bonds is equal to the no of hybrid orbitals in co-valent compounts. and the no of pi bonds equal to the pure orbitals eg: in ethylene for one carbon atom has 3 sigma bonds means that it has 3 hybrid orbitals (sp2), and it has one pi bond means that it has only one pure p orbital.


How is a molecular orbital formed?

In molecular orbital theory, MO theory, molecular orbitals are "built" from atomic orbitals. A common approach is to take a linear combination of atomic orbitals (LCAO), specifically symmetry adapted linear combinations (SALC) using group theory. The formation of a bond is essentially down to the overlap of the orbitals, the orbitals being of similar energy and the atomic orbital wave functions having the correct symmetry.

Related Questions

What is the type and how many molecular orbitals of ethylene?

Ethylene (C₂H₄) has a total of 6 molecular orbitals formed from the combination of 2 carbon atomic orbitals and 4 hydrogen atomic orbitals. These consist of 2 bonding molecular orbitals (σ and π) and their corresponding antibonding orbitals (σ* and π*), resulting in a total of 4 occupied molecular orbitals. The σ molecular orbitals include one from the C-C bond and two from the C-H bonds, while the π molecular orbital arises from the overlap of the p orbitals on the carbon atoms.


How does the constructive combination of atomic orbitals always result in the formation of antibonding molecular orbitals?

When atomic orbitals combine constructively, they create bonding molecular orbitals, which are stable. However, when they combine destructively, they form antibonding molecular orbitals, which are less stable. This is due to the phase relationship between the atomic orbitals.


In C2H4 what are the atomic orbitals that participate in forming the sigma bond between the C and H atoms?

In ethylene (C2H4), the sigma bond between the carbon and hydrogen atoms is formed by the overlap of the sp2 hybrid orbitals from carbon and the 1s orbital from hydrogen. The sp2 hybridization in carbon results in three sp2 orbitals and one unhybridized p orbital, with the three sp2 orbitals forming sigma bonds and the p orbital forming a pi bond.


Show Potential energy curve for bonding and antibonding molecular orbitals?

In a bonding molecular orbital, the potential energy decreases as the bond forms between two atomic orbitals, resulting in a stable, lower-energy state compared to the individual atomic orbitals. In an antibonding molecular orbital, the potential energy increases as the two atomic orbitals interact, leading to a higher-energy, less stable configuration due to destructive interference between the atomic orbitals.


How are atomic and molecular orbitals related?

Atomic orbitals are individual electron probability distributions around an atom's nucleus, while molecular orbitals are formed by the overlap of atomic orbitals in a molecule. Molecular orbitals describe the distribution of electrons over a molecule as a whole, taking into account interactions between multiple atoms. Atomic orbitals contribute to the formation of molecular orbitals through constructive or destructive interference.


What are the different electronic orbitals?

atomic orbitals and electron orbitals


How many molecular orbitals are produced when two atomic orbitals interact?

When two atomic orbitals interact, they produce two molecular orbitals.


A new set of identical orbitals formed by combining the atomic orbitals of an atom involved in covalent bonding?

Molecular orbitals are formed by the overlap of atomic orbitals from different atoms in a covalent bond. These molecular orbitals have distinct shapes and energies compared to the atomic orbitals they are formed from. The number of molecular orbitals formed is equal to the number of atomic orbitals that combine.


How do you find pure orbitals hybrid orbitals in hybridisation?

the no of sigma bonds is equal to the no of hybrid orbitals in co-valent compounts. and the no of pi bonds equal to the pure orbitals eg: in ethylene for one carbon atom has 3 sigma bonds means that it has 3 hybrid orbitals (sp2), and it has one pi bond means that it has only one pure p orbital.


How is a molecular orbital formed?

In molecular orbital theory, MO theory, molecular orbitals are "built" from atomic orbitals. A common approach is to take a linear combination of atomic orbitals (LCAO), specifically symmetry adapted linear combinations (SALC) using group theory. The formation of a bond is essentially down to the overlap of the orbitals, the orbitals being of similar energy and the atomic orbital wave functions having the correct symmetry.


What is the relationship between bonding, antibonding, and nonbonding orbitals in molecular structures?

Bonding orbitals are formed when atomic orbitals overlap in a way that stabilizes the molecule. Antibonding orbitals are formed when atomic orbitals overlap in a way that destabilizes the molecule. Nonbonding orbitals are localized on individual atoms and do not participate in bonding interactions. These three types of orbitals play a crucial role in determining the overall structure and stability of a molecule.


How many molecular orbitals are present in the system?

The number of molecular orbitals in the system depends on the number of atomic orbitals that are combined. If two atomic orbitals combine, they form two molecular orbitals: a bonding orbital and an antibonding orbital. So, in general, the number of molecular orbitals in a system is equal to the number of atomic orbitals that are combined.