i have know idea
pH = - log10 [H+], where [H+] is the molar concentration of hydrogen ions. HNO3 is a strong acid and dissociates completely in water so a 5 M solution of HNO3 would have a concentration of hydrogen ions of 5M also. So, pH = -log10[5] = -0.699 which indicates an extremely strong acid.
The reaction between HNO3 and NaOH is a 1:1 molar ratio. This means that the moles of HNO3 required to neutralize the NaOH is the same as the moles of NaOH. Given that 20.0 ml of HNO3 is needed to neutralize 10.0 ml of a 1.67 M NaOH solution, the molarity of the HNO3 solution is twice the molarity of the NaOH solution, which is 3.34 M.
Use the equation; MaVa= MbVbWhere M is Molarity and V is volume.For this question, the left side of the equation is the information for 0.12M HNO3The unknown will be x on the right of the equation (replace Vb with x and solve for x).After the answer is found, it will need to be converted to mL, 1 L=1000mL
The concentration of HNO3 in a solution with pH 3.4 is approximately 3.98 x 10^-4 M. This is calculated using the formula pH = -log[H+], where [H+] is the hydrogen ion concentration in mol/L. For nitric acid (HNO3), one mole of HNO3 produces one mole of H+ in solution.
The moles of KOH can be calculated as (0.50 mol/L) x (6.0 mL). Since KOH is in a 1:1 ratio with HNO3 in the neutralization reaction, the moles of HNO3 are the same as KOH. So, the molarity of the HNO3 sample would be (moles of HNO3) / (3.0 mL).
pH = - log10 [H+], where [H+] is the molar concentration of hydrogen ions. HNO3 is a strong acid and dissociates completely in water so a 5 M solution of HNO3 would have a concentration of hydrogen ions of 5M also. So, pH = -log10[5] = -0.699 which indicates an extremely strong acid.
10
Molarity = moles of solute/Liters of solution ( get moles of HNO3 and 300 ml = 0.300 Liters ) 0.31 grams Nitric acid (1 mole HNO3/63.018 grams) = 0.004919 moles HNO3 Molarity = 0.004919 moles HNO3/0.300 Liters = 0.0164 M HNO3
The reaction between HNO3 and NaOH is a 1:1 molar ratio. This means that the moles of HNO3 required to neutralize the NaOH is the same as the moles of NaOH. Given that 20.0 ml of HNO3 is needed to neutralize 10.0 ml of a 1.67 M NaOH solution, the molarity of the HNO3 solution is twice the molarity of the NaOH solution, which is 3.34 M.
The average of 6, 15 and m is (6 + 15 + m) / 3 = (21 + m)/3 = 7 + m/3
Use the equation; MaVa= MbVbWhere M is Molarity and V is volume.For this question, the left side of the equation is the information for 0.12M HNO3The unknown will be x on the right of the equation (replace Vb with x and solve for x).After the answer is found, it will need to be converted to mL, 1 L=1000mL
The concentration of HNO3 in a solution with pH 3.4 is approximately 3.98 x 10^-4 M. This is calculated using the formula pH = -log[H+], where [H+] is the hydrogen ion concentration in mol/L. For nitric acid (HNO3), one mole of HNO3 produces one mole of H+ in solution.
if the question were 15 M of F then answer is 15 Minutes of Fame which was a quote from Andy Warhol
If you mean m^2 -8m +15 then it equals (m -3)(m -5) when factored
The moles of KOH can be calculated as (0.50 mol/L) x (6.0 mL). Since KOH is in a 1:1 ratio with HNO3 in the neutralization reaction, the moles of HNO3 are the same as KOH. So, the molarity of the HNO3 sample would be (moles of HNO3) / (3.0 mL).
The pH of a 0.6 M HNO3 solution is approximately 0.23. This is because nitric acid is a strong acid that completely ionizes in solution, resulting in a high concentration of H+ ions that lower the pH.
I am assuming that you mean 15 meters by 18 meters. 15:18 = 5:6