answersLogoWhite

0

The equation that shows conservation of mass is the mass of reactants equals the mass of products in a chemical reaction. This can be represented as: Mass of reactants = Mass of products.

User Avatar

AnswerBot

1y ago

What else can I help you with?

Continue Learning about Chemistry

Which equation obeys the law of conservation of mass?

The equation 2H2 + O2 -> 2H2O obeys the law of conservation of mass. This balanced chemical equation shows that the total mass of the reactants (hydrogen and oxygen) equals the total mass of the products (water).


How does a balanced chemical equation shows that mass is conserved?

A balanced chemical equation shows that mass is conserved because the total mass of the reactants before a chemical reaction must equal the total mass of the products after the reaction. This is achieved by ensuring that the number of atoms of each element is the same on both sides of the equation. Therefore, what is consumed on the reactant side is equal to what is produced on the product side, preserving total mass.


Explain how the balancing of chemical equation shows that mass is conserved?

Balancing a chemical equation ensures that the number of atoms of each element on the reactant side is equal to the number on the product side. This conservation of atoms implies the conservation of mass. When the equation is balanced, the total mass of the reactants is equal to the total mass of the products, demonstrating the law of conservation of mass.


What equation shows conservation of both mass and charge?

The equation that shows conservation of both mass and charge is the continuity equation, ∂ρ/∂t + ∇⋅J = 0, where ρ is the charge density and J is the current density in an electromagnetic field. This equation states that the rate of change of charge density plus the divergence of the current density must equal zero, implying that charge is conserved locally. Additionally, in nuclear reactions, mass-energy equivalence (E=mc^2) relates the conservation of mass and energy.


Explain how a balanced equation supports the law of conservation of mass?

A balanced chemical equation shows that the total mass of reactants equals the total mass of products, which supports the law of conservation of mass. This law states that mass cannot be created or destroyed in a chemical reaction, only rearranged. By balancing the equation, we ensure that the number of atoms of each element is the same on both sides, preserving mass.

Related Questions

What is the equation of Einstein?

The importance of Einstein's equation is that it shows us that mass and energy are related. The famous equation is E=mc2.


Write the equation thats shows the equivalency of mass and energy?

The equation that shows the equivalency of mass and energy is E=mc^2, where E represents energy, m represents mass, and c represents the speed of light. This equation was proposed by Albert Einstein as part of his theory of relativity, showing that mass can be converted into energy and vice versa.


Which equation obeys the law of conservation of mass?

The equation 2H2 + O2 -> 2H2O obeys the law of conservation of mass. This balanced chemical equation shows that the total mass of the reactants (hydrogen and oxygen) equals the total mass of the products (water).


What is the relationship between mass and energy?

The relationship between mass and energy is described by Einstein's famous equation, Emc2. This equation shows that energy and mass are interchangeable and can be converted into each other. In other words, mass can be converted into energy, and vice versa, according to this equation.


What is the significance of the equation Emc2 in relation to the concept of momentum, as represented by the equation pmc?

The equation Emc2, proposed by Albert Einstein, shows the relationship between energy (E), mass (m), and the speed of light (c). It signifies that mass can be converted into energy and vice versa. In relation to momentum (pmc), the equation shows that momentum is directly proportional to mass and velocity, highlighting the connection between mass-energy equivalence and momentum in physics.


What is the equation that shows the quivalency of mass and energy?

E=MC2Where:E= energyM= massC= the velocity of light.


How does a balanced chemical equation shows that mass is conserved?

A balanced chemical equation shows that mass is conserved because the total mass of the reactants before a chemical reaction must equal the total mass of the products after the reaction. This is achieved by ensuring that the number of atoms of each element is the same on both sides of the equation. Therefore, what is consumed on the reactant side is equal to what is produced on the product side, preserving total mass.


Explain how the balancing of chemical equation shows that mass is conserved?

Balancing a chemical equation ensures that the number of atoms of each element on the reactant side is equal to the number on the product side. This conservation of atoms implies the conservation of mass. When the equation is balanced, the total mass of the reactants is equal to the total mass of the products, demonstrating the law of conservation of mass.


What is the significance of the equation Emc2 in relation to the concept of momentum, as expressed by the equation pmc2?

The equation Emc2, proposed by Albert Einstein, shows the relationship between energy (E), mass (m), and the speed of light (c). It signifies that mass can be converted into energy and vice versa. The equation pmc2, where p represents momentum, is derived from Emc2 and shows that momentum is also related to mass and the speed of light. This connection highlights the fundamental link between mass, energy, and momentum in the context of special relativity.


Newton's second law shows the relationship among which three quantities?

The relationship among (force,mass,acceleration) as an equation (acceleration= (mass÷force


How does mass change with energy?

Mass and energy are related through Einstein's famous equation, Emc2. This equation shows that mass can be converted into energy and vice versa. When energy is added to a system, the mass of that system can increase, and when energy is removed, the mass can decrease. This relationship between mass and energy is a fundamental concept in physics.


What equation shows conservation of both mass and charge?

The equation that shows conservation of both mass and charge is the continuity equation, ∂ρ/∂t + ∇⋅J = 0, where ρ is the charge density and J is the current density in an electromagnetic field. This equation states that the rate of change of charge density plus the divergence of the current density must equal zero, implying that charge is conserved locally. Additionally, in nuclear reactions, mass-energy equivalence (E=mc^2) relates the conservation of mass and energy.