The equation that shows the equivalency of mass and energy is E=mc^2, where E represents energy, m represents mass, and c represents the speed of light. This equation was proposed by Albert Einstein as part of his theory of relativity, showing that mass can be converted into energy and vice versa.
The relationship between mass and energy is described by Einstein's famous equation, Emc2. This equation shows that energy and mass are interchangeable and can be converted into each other. In other words, mass can be converted into energy, and vice versa, according to this equation.
The energy force equation that describes the relationship between energy and force is: Work (energy) Force x Distance. This equation shows that the amount of work done (energy) is equal to the force applied multiplied by the distance over which the force is applied.
The equation used to calculate energy is E = mc^2, where E represents energy, m is the mass of the object, and c is the speed of light in a vacuum. This equation, formulated by Albert Einstein in his theory of relativity, shows the relationship between mass and energy.
The force to energy equation is work force x distance. This equation shows that work is done when a force is applied to an object and causes it to move a certain distance. Work is the transfer of energy from one object to another, and the force to energy equation helps us understand how this transfer occurs.
The equation Emc2, proposed by Albert Einstein, shows the relationship between energy (E), mass (m), and the speed of light (c). It signifies that mass can be converted into energy and vice versa. In relation to momentum (pmc), the equation shows that momentum is directly proportional to mass and velocity, highlighting the connection between mass-energy equivalence and momentum in physics.
There is no equivalence between metres and gigametre.An equation for conversion is 1,000,000,000 metres = 1 gigametre.
The importance of Einstein's equation is that it shows us that mass and energy are related. The famous equation is E=mc2.
It is called a photosynthesis equation.
The relationship between mass and energy is described by Einstein's famous equation, Emc2. This equation shows that energy and mass are interchangeable and can be converted into each other. In other words, mass can be converted into energy, and vice versa, according to this equation.
The energy force equation that describes the relationship between energy and force is: Work (energy) Force x Distance. This equation shows that the amount of work done (energy) is equal to the force applied multiplied by the distance over which the force is applied.
The equation used to calculate energy is E = mc^2, where E represents energy, m is the mass of the object, and c is the speed of light in a vacuum. This equation, formulated by Albert Einstein in his theory of relativity, shows the relationship between mass and energy.
E=MC2Where:E= energyM= massC= the velocity of light.
The normal way of showing that y is a function of x is to write y = f(x).
Na -> Na+ + e-
84 = 2*2*3*7
MgCO3 --(heat)--->MgO+CO2
Look at the equation for kinetic energy. It clearly shows that the kinetic energy depends on the object's mass, and its speed.