it will get fire slowly
Water turns colored when potassium permanganate is added because the potassium permanganate crystals dissolve, releasing the purple permanganate ion (MnO4-) into the water. The permanganate ion absorbs light in the visible spectrum, giving the water a pink or purple color.
The color of potassium permanganate does not disappear when excess is added because it is a self-indicating compound. When there is excess potassium permanganate present, it remains in its colored form (purple) to signal that the reaction is complete or that there are no reducers left to interact with.
When potassium permagnate is added initially to ethanol, ethanol gets oxidised into ethanoic acid using potassium permagnate. Thus, decolorizing potassium permagnate. When excess is added , the color of potassium permagnate persists.
When potassium permanganate is added to water, the water changes color to a pink or purple hue. This is because potassium permanganate is a strong oxidizing agent that reacts with organic compounds present in the water, causing the color change.
The color of potassium permanganate does not disappear when excess ethanol is added because ethanol is unable to fully reduce the permanganate ion (MnO4-) to colorless manganese dioxide (MnO2). Ethanol is a weak reducing agent and is not capable of completely reducing the permanganate ion in this reaction. Additionally, the reaction between potassium permanganate and ethanol is not stoichiometric, meaning that there is an excess of one of the reactants, which can also contribute to the color persisting.
Water turns colored when potassium permanganate is added because the potassium permanganate crystals dissolve, releasing the purple permanganate ion (MnO4-) into the water. The permanganate ion absorbs light in the visible spectrum, giving the water a pink or purple color.
The color of potassium permanganate does not disappear when excess is added because it is a self-indicating compound. When there is excess potassium permanganate present, it remains in its colored form (purple) to signal that the reaction is complete or that there are no reducers left to interact with.
When potassium permagnate is added initially to ethanol, ethanol gets oxidised into ethanoic acid using potassium permagnate. Thus, decolorizing potassium permagnate. When excess is added , the color of potassium permagnate persists.
When potassium permanganate is added to water, the water changes color to a pink or purple hue. This is because potassium permanganate is a strong oxidizing agent that reacts with organic compounds present in the water, causing the color change.
Potassium permanganate can potentially alter the surface tension of water, as it is a strong oxidizing agent. When added to water, it can break down organic compounds and reduce the surface tension. However, the effect may vary depending on the concentration of potassium permanganate and other factors.
The color of potassium permanganate does not disappear when excess ethanol is added because ethanol is unable to fully reduce the permanganate ion (MnO4-) to colorless manganese dioxide (MnO2). Ethanol is a weak reducing agent and is not capable of completely reducing the permanganate ion in this reaction. Additionally, the reaction between potassium permanganate and ethanol is not stoichiometric, meaning that there is an excess of one of the reactants, which can also contribute to the color persisting.
When zinc is added to acidified potassium permanganate solution, zinc displaces manganese from permanganate ions. This reduction reaction causes the purple color of the potassium permanganate solution to fade as the manganese ions are formed. The resulting solution may turn colorless or pink, depending on the concentration of the reactants.
Potassium permanganate and bisulfite in stronger acid environment:2MnO4-(aq) + 5HSO3-(aq) + H+(aq) --> 5SO42- + 2Mn2+(aq) + 3H2O(l)Note:Potassium and sodium ions do NOT react, they are tribune-ions.
When potassium permanganate solution is dropped into water, it dissolves and forms a purple solution. If concentrated sulfuric acid is then added, the manganese in potassium permanganate can be reduced to form a colorless compound. This reaction generates heat and can be exothermic. The resulting solution will likely be colorless or have a faint pink hue instead of the original purple color.
Potassium permanganate and sulfite:2MnO4-(aq) + 5SO32-(aq) + 6H+(aq) --> 5SO42- + 2Mn2+(aq) + 3H2O(l)Note:Potassium and sodium ions do NOT react, they are tribune-ions
Add KMnO4 (Potassium Permanganate) which is a purple solution. If it is added to an alkene or alkyne it will turn colourless and produces a brown precipitate.
When acidified potassium permanganate is added to an alkene, the purple color disappears due to the reduction of permanganate ions to colorless manganese dioxide. The alkene oxidizes the permanganate ions, causing them to be reduced and lose their color. This reaction is used to test for the presence of carbon-carbon double bonds in organic compounds.