the electrical potential is also increased;electricity does not travel through wire but around the outside,which is why transmission lines are bare
It will be pushed away from the source of the electric field.
First off you know that when it says "Proton" you should know that its a Positive (+) Charged subatomic particle! Now You use the equation that says --> Volt = Electric Potential Energy / Q Volt = 0.5 / +1 (proton) Volt = 0.5
dipole when placed in nonuniform electric field it experiences a net force if field is varying in direction but if field is nonuniform in magnitude then force depends on its posititon it may experience a torque again depends on depends on its posititon so it may translate as well as rotate
When positive and negative ions are separated, an electric potential difference is created which results in an electric field. This separation of charges can lead to various phenomena such as static electricity, chemical reactions, and electrical current flow.
The angle between the dipole moment and the electric field in an electric dipole is 0 degrees or 180 degrees. This means the dipole moment is either aligned with or opposite to the electric field direction.
THIS IS A GOOD QUESTION IF WE PLACE THE CHARGE IN THE ELECTRIC FIELD AT A DISTANCE R FROM THE ELECTRIC FIELD AND PLACED THE ANOTHER POINT CHARGE AT A ANOTHER DISTANCE r WHERE R IS GRATER THAN THE SMALL R THEN THE ELECTRIC FIELD AT r IS MORE THAN THE ELECTRIC FIELD AT POINT R.ORWE CAN SAY THAT IF THE CHARGE IS PLACED IN THE DIRECTION OF ELECTRIC FIELD THAN ITS ELECTROSTATIC POTENTIAL ENERGY WILL DECREASE OR WHEN IN DIRECTION OPPOSITE THAN VICEVERSA
Electric field intensity is related to electric potential by the equation E = -∇V, where E is the electric field intensity and V is the electric potential. This means that the electric field points in the direction of steepest decrease of the electric potential. In other words, the electric field intensity is the negative gradient of the electric potential.
Electric field intensity is related to electric potential by the equation E = -dV/dx, where E is the electric field intensity, V is the electric potential, and x is the distance in the direction of the field. Essentially, the electric field points in the direction of decreasing potential, and the magnitude of the field is related to the rate at which the potential changes.
In a region of uniform electric field, the electric potential is constant.
In a given system, the electric potential is directly related to the electric field. The electric field is the rate of change of electric potential with respect to distance. In other words, the electric field points in the direction of decreasing potential.
The electric field and electric potential in a given region of space are related by the equation E -V, where E is the electric field, V is the electric potential, and is the gradient operator. This means that the electric field is the negative gradient of the electric potential. In simpler terms, the electric field points in the direction of the steepest decrease in electric potential.
If the electric potential is zero, the electric field at that point is perpendicular to the equipotential surface.
Yes, if the electric field is zero, then the electric potential is also zero.
The electric field is the force experienced by a charged particle in an electric field, while the electric potential is the amount of work needed to move a charged particle from one point to another in an electric field. The relationship between the two is that the electric field is the negative gradient of the electric potential. In other words, the electric field points in the direction of the steepest decrease in electric potential.
Electric potential is the amount of electric potential energy per unit charge at a specific point in an electric field. Electric potential energy, on the other hand, is the energy stored in an object due to its position in an electric field. In simpler terms, electric potential is like the "pressure" at a point in the field, while electric potential energy is the "stored energy" of an object in that field.
No, the electric field does not necessarily have to be zero just because the potential is constant in a given region of space. The electric field is related to the potential by the gradient, so if the potential is constant, the electric field is zero only if the gradient of the potential is zero.
When the potential is decreasing, the electric field points in the direction of decreasing potential.