answersLogoWhite

0

When the potential is decreasing, the electric field points in the direction of decreasing potential.

User Avatar

AnswerBot

3mo ago

What else can I help you with?

Continue Learning about Physics

What is the relationship between electric potential and electric field in a given system?

In a given system, the electric potential is directly related to the electric field. The electric field is the rate of change of electric potential with respect to distance. In other words, the electric field points in the direction of decreasing potential.


What is relation between electric field intensity and electric potential?

Electric field intensity is related to electric potential by the equation E = -∇V, where E is the electric field intensity and V is the electric potential. This means that the electric field points in the direction of steepest decrease of the electric potential. In other words, the electric field intensity is the negative gradient of the electric potential.


What is the relationship between the electric field and electric potential in a given region of space?

The electric field and electric potential in a given region of space are related by the equation E -V, where E is the electric field, V is the electric potential, and is the gradient operator. This means that the electric field is the negative gradient of the electric potential. In simpler terms, the electric field points in the direction of the steepest decrease in electric potential.


What is the relationship between the scalar potential and the electric field in a given region of space?

In a given region of space, the scalar potential is related to the electric field by the gradient of the scalar potential. The electric field is the negative gradient of the scalar potential. This means that the electric field points in the direction of the steepest decrease in the scalar potential.


What is the relationship between the electric field and electric potential?

The electric field is the force experienced by a charged particle in an electric field, while the electric potential is the amount of work needed to move a charged particle from one point to another in an electric field. The relationship between the two is that the electric field is the negative gradient of the electric potential. In other words, the electric field points in the direction of the steepest decrease in electric potential.

Related Questions

What is the relationship between electric potential and electric field in a given system?

In a given system, the electric potential is directly related to the electric field. The electric field is the rate of change of electric potential with respect to distance. In other words, the electric field points in the direction of decreasing potential.


Relationship between electric field intensity and electric potential?

Electric field intensity is related to electric potential by the equation E = -dV/dx, where E is the electric field intensity, V is the electric potential, and x is the distance in the direction of the field. Essentially, the electric field points in the direction of decreasing potential, and the magnitude of the field is related to the rate at which the potential changes.


Why electric field is negative gradient of electric potential?

The electric field is the negative gradient of the electric potential because it points in the direction of steepest decrease in potential. This relationship is based on the definition of potential energy as work done per unit charge. Negative gradient signifies the direction of decreasing potential with respect to position in space.


What is relation between electric field intensity and electric potential?

Electric field intensity is related to electric potential by the equation E = -∇V, where E is the electric field intensity and V is the electric potential. This means that the electric field points in the direction of steepest decrease of the electric potential. In other words, the electric field intensity is the negative gradient of the electric potential.


What is the relationship between the electric field and electric potential in a given region of space?

The electric field and electric potential in a given region of space are related by the equation E -V, where E is the electric field, V is the electric potential, and is the gradient operator. This means that the electric field is the negative gradient of the electric potential. In simpler terms, the electric field points in the direction of the steepest decrease in electric potential.


What is the point at which a graph changes directions?

Turning points are the points at which a graph changes direction from increasing o decreasing or decreasing to increasing.


What is the relationship between the scalar potential and the electric field in a given region of space?

In a given region of space, the scalar potential is related to the electric field by the gradient of the scalar potential. The electric field is the negative gradient of the scalar potential. This means that the electric field points in the direction of the steepest decrease in the scalar potential.


What is the relationship between the electric field and electric potential?

The electric field is the force experienced by a charged particle in an electric field, while the electric potential is the amount of work needed to move a charged particle from one point to another in an electric field. The relationship between the two is that the electric field is the negative gradient of the electric potential. In other words, the electric field points in the direction of the steepest decrease in electric potential.


What is potential step from 1 potential to o potential?

When there is a potential difference between two points, such as from 1 potential to 0 potential, it means that there is a voltage drop of 1 unit in the direction from higher potential to lower potential. This difference in potential creates an electric field that can drive the flow of electric charge.


In which direction do electric field points from positive to negative?

The electric field points from positive to negative.


Do positive charges tend to move from points of high potential to low potential?

Yes, positive charges tend to move from points of high electric potential to points of low electric potential due to the attraction of opposite charges. This movement creates an electric current in a conductor.


What Electric potential or potential difference?

Electric potential (also known as voltage) is the amount of electric potential energy per unit of charge at a specific point in an electric field. It is measured in volts (V) and determines the ability of a charge to do work. Potential difference is the difference in electric potential between two points in an electric field and is responsible for the flow of electric current between those points.