2 different isotopes of uranium.
isotope= element with same number of electrons, same number of protons, different numbers of neutrons.
U235 has 143 neutrons and 92 protons
U238 has 146 neurtons and 92 protons
The references I have state Oralloy is 93.5% U235. Oralloy (Oak Ridge Alloy) was used in US Uranium atomic bombs as the fissile material. However they also say that any enrichment 20% U235 or higher is fissile and could be used to make a bomb, it would require a higher critical mass to work though. One source I have states that early Soviet Uranium atomic bombs used ~97% U235, but the US felt this level of enrichment to be unnecessary and excessively expensive.
The nucleus of the Uranium-235 (U235) atom participates in the nuclear reaction by absorbing a neutron (n) to form an unstable compound nucleus, which then undergoes fission into Xe134, Sr100, and two neutrons (2n).
Isotopes. eg U235 and U238. Both Uranium, atomic number 92, bur different isotopes.
I have a figure but this is for 1 kg of Uranium 235, normally reactor fuel is about 4 percent of this isotope, so the amount of coal would be divided by 25 if we are talking about uranium as used in PWR or BWR reactors. Also this figure is for complete use of the U235, whereas for practical reasons of maintaining reactor performance, fuel is unloaded and replaced before it is all used up. So bearing in mind the above, 1 kg of U235 will produce as much energy as 1500 tons of coal. Let's try: 1kg of U235 (3,75%) has 83,14 TJ/kg. 1J=1Ws (3600Ws=1Wh). 1TJ=1000GJ=1 mio MJ 1kg of coal has 6000Wh/kg. I get 3850tons.
U-235 18.4Kg (a sphere 12.6cm diameter) will do, probably less.P-239 6.4Kg (a sphere 9.2cm diameter) will do, probably less.Nucleonics Fundamentals, McGraw Hill 1959, page 313
Element number 92 is Uranium and there are two main isotopes - U235 and U238. In U235 there are 92 protons so there are 235 - 92 = 143 neutrons. In U238 there are thus 146 neutrons
It is estimated that 1 kilogram of U235 can produce approximately 24,000 MWh of electricity in a nuclear reactor. This amount can vary depending on the efficiency of the reactor and the specific conditions of operation.
In power reactors the fuel is uranium enriched slightly to about 4 percent U235 (the fissile isotope), whereas for a bomb you need the U235 as high as possible, in the high 90's I believe.
which process & which isotope u mention 1. nuclear reaction U235 & Pu239
Yes, U233, U235, and U238 are all used as nuclear fuels.
The references I have state Oralloy is 93.5% U235. Oralloy (Oak Ridge Alloy) was used in US Uranium atomic bombs as the fissile material. However they also say that any enrichment 20% U235 or higher is fissile and could be used to make a bomb, it would require a higher critical mass to work though. One source I have states that early Soviet Uranium atomic bombs used ~97% U235, but the US felt this level of enrichment to be unnecessary and excessively expensive.
Enough of either U235 or PU239 to form a critical mass and hence a large explosion
The question is asking if U235 a liquid or a gas. It is a solid and does not flow.
Each time a U235 atom decays, it emits 2-3 neutrons. The likelihood that one of these neutrons is captured by another U235 atom INCREASES with more mass. The SHAPE of this mass will also play a role, imagine a thin wire of U235, compared to a sphere, with regards to how likely a chain reaction will occur. Neutron reflection can also help redirect an errant neutron back into the mass so it can react instead. Compression (increase of density) plays a role as well.
The same name with a different atomic mass number. As an example U235 and U238 are two isotopes of Uranium
in order,- Fission, (u235) Fusion, (d-t) Fusion (sun) Antimatter, Zero point energy.
No, uranium-235 (U-235) is not stable. It is a radioactive isotope that undergoes radioactive decay, emitting particles and energy in the process.