Acid-base titrations redox titrations are known to us in which commonly indicators are used to locate the end point eg., methyl orange,phenolphlthalene for acid base titrations and starch solutions for iodemetry type redox process. How ever electrical conductance measurement canbe used as a tool to locate the end point. eg1. HCl vs NaOH Consider a solution of a strong acid, hydrochloric acid, HCl for instance, towhich a solution of a strong base, sodium hydroxide NaOH, is added. The reaction occurs. For each amount of NaOH added equivalent amount of hydrogen ions is removed. Effectively, the faster moving H+ cation is replaced by the slower moving Na+ ion, and the conductivity of the titrated solution as well as the measured conductance of the cell fall. This continues until the equivalence point is reached, at which we have a solution of sodium chloride, NaCl. If more base is added an increase in conductivity or conductance is observed, since more ions are being added and the neutralization reaction no longer removes an appreciable number any of them. Consequently, in the titration of a strong acid with a strong base, the conductance has a minimum at the equivalence point. This minimum can be used instead of an indicator dye to determine the endpoint of the titration. Conductometric titration curve, that is a plot of the measured conductance or conductivity values against the number of milliliters of NaOH solution, is shown in Fig. sorry I could not send the graph, and refer other cases but for a detailed discussion, you may mail --Dr.T.SRINIVASA MURTHY MSC., Ph.D ,Sr Faculty (IIT-JEE) ,NARAYANA ACADEMY HYDERABAD MAIL : vasuchemistry@gmail.com
Some types of conductometric titrations include acid-base titrations, redox titrations, and precipitation titrations. Conductometric titration involves measuring the change in electrical conductivity as reactants are titrated against each other until an equivalence point is reached.
Conductometric titrations measure the change in electrical conductivity during a titration, while volumetric titrations measure the volume of titrant needed to reach the equivalence point. Conductometric titrations are more sensitive to small changes in concentration, while volumetric titrations are more straightforward to perform and interpret.
The types of conductometric titrations include strong acid-strong base titrations, weak acid-strong base titrations, weak base-strong acid titrations, and precipitation titrations. Conductometric titrations measure the change in electrical conductivity of a solution as a titrant is added, allowing for the determination of the endpoint of the reaction.
Coductometric titration: is based on the suddenly change of the conductivity at the equivalence point.Volumetric titration: the volume of a standardized titrant is measured at the eqivalence point.
Oxalic acid is used in conductometric titrations because it is a strong electrolyte that dissociates completely in solution, leading to a sharp increase in conductivity at the equivalence point. This makes it easier to accurately determine the endpoint of the titration.
Some types of conductometric titrations include acid-base titrations, redox titrations, and precipitation titrations. Conductometric titration involves measuring the change in electrical conductivity as reactants are titrated against each other until an equivalence point is reached.
Conductometric titrations measure the change in electrical conductivity during a titration, while volumetric titrations measure the volume of titrant needed to reach the equivalence point. Conductometric titrations are more sensitive to small changes in concentration, while volumetric titrations are more straightforward to perform and interpret.
The types of conductometric titrations include strong acid-strong base titrations, weak acid-strong base titrations, weak base-strong acid titrations, and precipitation titrations. Conductometric titrations measure the change in electrical conductivity of a solution as a titrant is added, allowing for the determination of the endpoint of the reaction.
The platinum electrode is used in coductometry.
Coductometric titration: is based on the suddenly change of the conductivity at the equivalence point.Volumetric titration: the volume of a standardized titrant is measured at the eqivalence point.
Oxalic acid is used in conductometric titrations because it is a strong electrolyte that dissociates completely in solution, leading to a sharp increase in conductivity at the equivalence point. This makes it easier to accurately determine the endpoint of the titration.
To minimize errors in conductometric titrations, ensure accurate calibration of the conductivity meter, use high-quality chemicals and glassware, maintain a constant temperature, and perform multiple titrations to obtain consistent results. Additionally, ensure the stirring is uniform during the titration process to minimize errors.
Diluting the titrand in conductometric titrations helps to ensure a more linear relationship between the conductivity and the concentration of the analyte. This can improve the accuracy and precision of the titration results. Additionally, dilution can prevent issues such as excessive conductivity that could lead to errors in the titration endpoint determination.
Platinum electrodes are commonly used in conductometric titrations because they are inert, meaning they do not react with the solutions being tested, ensuring accurate measurements. In addition, platinum electrodes have good electrical conductivity and stability, making them reliable for consistent and precise titration results.
Conductance can increase after the end point in conductometric titrations due to the presence of excess titrant in the solution, leading to higher conductivity. This excess titrant can contribute to the conductance of the solution and cause an increase in measured conductance. Factors such as incomplete reaction or side reactions can also contribute to the increase in conductance post-end point.
The principle of conductometric titration involves measuring the change in electrical conductivity of a solution as a titrant is added to a sample solution. This change in conductivity occurs due to the formation or consumption of ions during the titration process, which can be used to determine the endpoint of the titration. Conductometric titration is commonly used to determine the concentration of ions in a solution or to identify the equivalence point in acid-base titrations.
Conductometric titration is used in analytical chemistry to determine the endpoint of a titration by monitoring changes in electrical conductivity. It is commonly used to determine the concentration of ions in a solution, such as the determination of the calcium ion concentration in water or the acid content in a sample. Conductometric titration is also useful in studying complexation reactions and acid-base titrations.