Each molecule of H2O contains three atoms. Avogadro's number of water molecules constitutes about 18 grams; therefore one-third of this mass, or 6 grams, will contain the stated number of atoms.
To have Avogadro's number of particles of CoCl2 6H2O, you would need to measure out 1 mole of the compound. This is equivalent to the molar mass of CoCl2 6H2O in grams, which is approximately 237.93 grams.
602 000 000 000 000 000 000 000 which is Avogadros number. It is the number of particles in one mole of a substance. ex: one mol of Hydrogen is 1.
Avogadro's hypothesis states that equal volumes of gases at the same temperature and pressure contain the same number of molecules. This principle helped establish the concept of the mole as a unit for measuring the amount of substance.
divide the number of atoms by avogadros number (6.022*10^23), the resulting number is the number of moles you have. Multiply the number of moles of atoms by the molar mass (found on any periodic table) and the answer is how many grams of the substance you have.
PV/NrT, pressure(volume)/amount(constant)(temperature). When your temperature, volume, and pressure are all the same, you get the same number of particles. This is avogadros hypothesis. Let's say that you have to balloons. They have the same temperature, volume, and pressure. If you weigh the gases in the balloon, you will find that there is the same amount of particles. In fact Dalton did this was able to find out the amount of particles (atoms) by the mass of objects.
A mole.
Its avogadros number
No.
I asked this question wrong. It should be Avogadros Number. Sorry!
atoms in 12 g of c-12
It is 6.02 (times) 10 to the power of 23
The unit is "per mole", or mol^-1.
It is the number of fundamental particles - atoms or molecules - of a substance in 1 mole of that substance.
Its avogadros number which is 6.02 X 10^23 g/mol
Avogadro's number represents the number of units of a substance in one mole of the substance. These units may be electrons, atoms, ions, or molecules, depending on the substance.
1 mole has 6,022 140 857 (74).1023 molecules, atoms, ions.
Avogadros number (approximately). The atomic weight of iron is 55.845. Avogadros number , the number of atoms in a mole of an element, or the number of molecules in a mole of a compound is 6.023 X 1023