answersLogoWhite

0

The compound is likely a ketone. Ketones do not react with Fehling's or Tollens' reagent to form precipitates, unlike aldehydes which would undergo redox reactions resulting in a visible change.

User Avatar

AnswerBot

1y ago

What else can I help you with?

Continue Learning about Chemistry

What is the difference between fehling's solution and tollens reagent?

Fehling's solution is used to test for the presence of reducing sugars, while Tollens reagent is used to test for the presence of aldehydes. Fehling's solution contains cupric ions, while Tollens reagent contains silver ions. When a reducing sugar reacts with Fehling's solution, a brick-red precipitate forms, while with Tollens reagent, silver ions are reduced to form a silver mirror on the test tube.


Why ketone do not react with Fehlings solution and Tollens reagent?

Ketones do not react with Fehling's solution or Tollens' reagent because they lack the free aldehyde group necessary for these reactions to occur. Both Fehling's solution and Tollens' reagent depend on the presence of the aldehyde group to participate in redox reactions that lead to the formation of a colored precipitate. Without this aldehyde group, ketones do not undergo these reactions.


What is the reaction of acetone and tollens reagent?

Acetone does not react with Tollens' reagent (ammoniacal silver nitrate solution) because it does not contain an aldehyde group, which is necessary for the Tollens' test to occur. Tollens' reagent reacts with aldehydes to produce a silver mirror on the inner surface of the test tube.


Why Tollens reagent does not react with ketone?

Tollens reagent is a mild oxidizing agent that reacts with aldehydes to produce a silver mirror. Ketones, however, do not have a hydrogen atom bonded to the carbonyl group, making them resistant to oxidation by Tollens reagent. As a result, ketones do not react with Tollens reagent.


Does tollens reagent react with cyclohexanone?

Yes, Tollens' reagent can react with cyclohexanone. Tollens' reagent is commonly used to test for the presence of aldehydes, including cyclohexanone, by forming a silver mirror when the aldehyde is present.

Related Questions

What is the difference between fehling's solution and tollens reagent?

Fehling's solution is used to test for the presence of reducing sugars, while Tollens reagent is used to test for the presence of aldehydes. Fehling's solution contains cupric ions, while Tollens reagent contains silver ions. When a reducing sugar reacts with Fehling's solution, a brick-red precipitate forms, while with Tollens reagent, silver ions are reduced to form a silver mirror on the test tube.


Why ketone do not react with Fehlings solution and Tollens reagent?

Ketones do not react with Fehling's solution or Tollens' reagent because they lack the free aldehyde group necessary for these reactions to occur. Both Fehling's solution and Tollens' reagent depend on the presence of the aldehyde group to participate in redox reactions that lead to the formation of a colored precipitate. Without this aldehyde group, ketones do not undergo these reactions.


What is the reaction of acetone and tollens reagent?

Acetone does not react with Tollens' reagent (ammoniacal silver nitrate solution) because it does not contain an aldehyde group, which is necessary for the Tollens' test to occur. Tollens' reagent reacts with aldehydes to produce a silver mirror on the inner surface of the test tube.


Why Tollens reagent does not react with ketone?

Tollens reagent is a mild oxidizing agent that reacts with aldehydes to produce a silver mirror. Ketones, however, do not have a hydrogen atom bonded to the carbonyl group, making them resistant to oxidation by Tollens reagent. As a result, ketones do not react with Tollens reagent.


Does tollens reagent react with cyclohexanone?

Yes, Tollens' reagent can react with cyclohexanone. Tollens' reagent is commonly used to test for the presence of aldehydes, including cyclohexanone, by forming a silver mirror when the aldehyde is present.


Will CH3CHO react to tollens?

Yes, CH3CHO (acetaldehyde) will react with Tollens' reagent. Tollens' reagent is commonly used to test for the presence of aldehydes, including acetaldehyde, by forming a silver mirror on the walls of the test tube when a positive result is obtained.


Is fructose gives positive test with tollens reagent?

Fructose does not give a positive test with Tollens' reagent because it is a reducing sugar that does not have a free aldehyde group capable of reducing the Tollens' reagent. Tollens' reagent is typically used to detect the presence of aldehydes but may not react with fructose due to its ketone functional group.


Why pyrrole-2-aldehyde does not respond to tollens reagent?

Pyrrole-2-aldehyde does not respond to Tollens reagent because it is not a reducing sugar. Tollens reagent (silver nitrate) is used to test for the presence of aldehyde groups, which are commonly found in reducing sugars. Reducing sugars contain aldehyde groups and are capable of donating electrons to Tollens reagent, forming a silver mirror on the test tube wall. Pyrrole-2-aldehyde does not contain aldehyde groups, and therefore is not a reducing sugar. As a result, it does not react with Tollens reagent.


What test is used to show the reducing property of an aldehyde and a ketone?

The Tollens' test is commonly used to show the reducing property of an aldehyde. In this test, an aldehyde will reduce silver ions in Tollens' reagent to form a silver mirror. Ketones do not show this reaction.


What is the equation for sucrose and tollens reagent?

The reaction between sucrose and Tollens' reagent results in the formation of a silver mirror. The equation for this reaction is: C12H22O11 (sucrose) + 2Ag(NH3)2OH (Tollens' reagent) → 12Ag (s) + CO2 (g) + H2O (l) + 22NH3 (aq)


What is formula of tollens reagent?

2[Ag(NH3)2]OH is tollen's reagent


What compound can be oxidized by both Benedicts solution and Tollens reagent?

A reducing sugar such as glucose can be oxidized by both Benedicts solution and Tollens reagent to form a colored precipitate. This reaction is used to test for the presence of reducing sugars in a solution.