Enthalpy is the energy absorbed or lost from a reaction, but enthalpy change per mole is the amount of energy lost per mole, so in order to get the overall enthalpy from the change per mole, you must multiply that value by the amount of moles used in the reaction.
Enthalpy of combusion is energy change when reacting with oxygen. Enthalpy of formation is energy change when forming a compound. But some enthalpies can be equal.ex-Combusion of H2 and formation of H2O is equal
The Hreaction is the difference between Hf, products and Hf, reactants
The enthalpy of formation is the energy change when one mole of a compound is formed from its elements in their standard states. The enthalpy of reaction is the energy change in a chemical reaction. The enthalpy of reaction can be calculated by subtracting the sum of the enthalpies of formation of the reactants from the sum of the enthalpies of formation of the products.
delta Hr is the enthalphy change of a reaction delta Hf is the enthalpy of formation where one mole of a substance is formed ( generally in its naturally occurring physical state) delta Hc is the enthalpy of combustion where one mole of a substance in its standard state undergoes combustion delta Hn is the enthalpy of neutralization where one mole of H+ reacts with OH- to form one mole of H2O delta Ha is the enthalpy of atomization where a molecule splits to form its neutral atomic components
The standard enthalpy change for a reaction is the amount of heat energy absorbed or released in kilojoules per mole (kJ/mol).
Enthalpy of combusion is energy change when reacting with oxygen. Enthalpy of formation is energy change when forming a compound. But some enthalpies can be equal.ex-Combusion of H2 and formation of H2O is equal
The Hreaction is the difference between Hf, products and Hf, reactants
The enthalpy of formation is the energy change when one mole of a compound is formed from its elements in their standard states. The enthalpy of reaction is the energy change in a chemical reaction. The enthalpy of reaction can be calculated by subtracting the sum of the enthalpies of formation of the reactants from the sum of the enthalpies of formation of the products.
delta Hr is the enthalphy change of a reaction delta Hf is the enthalpy of formation where one mole of a substance is formed ( generally in its naturally occurring physical state) delta Hc is the enthalpy of combustion where one mole of a substance in its standard state undergoes combustion delta Hn is the enthalpy of neutralization where one mole of H+ reacts with OH- to form one mole of H2O delta Ha is the enthalpy of atomization where a molecule splits to form its neutral atomic components
The enthalpy of formation (deltaHf) is the enthalpy change when 1 mole of a compound is formed from its constituent elements in their standard states. The deltaH of a reaction is the difference in enthalpy between the products and the reactants. The deltaH of a reaction can be calculated by taking the sum of the deltaHf of the products minus the sum of the deltaHf of the reactants.
The standard enthalpy change for a reaction is the amount of heat energy absorbed or released in kilojoules per mole (kJ/mol).
i believe that standard enthalpy change of atomisation is the enthalpy change that takes place when one mole of gaseous atoms is formed from its elements under standard conditions(which includes breaking of bonds between atoms within molecules), while for sublimation it only involves the change of states (from solid to liquid) with no intramolecular bonds broken.
The standard enthalpy of formation is the energy change when one mole of a compound is formed from its elements in their standard states. The standard enthalpy of reaction is the energy change for a reaction under standard conditions. The relationship between the two is that the standard enthalpy of reaction is the sum of the standard enthalpies of formation of the products minus the sum of the standard enthalpies of formation of the reactants.
Molar enthalpy change, also known as molar enthalpy of reaction, is the amount of heat energy released or absorbed during a chemical reaction per mole of a substance. It is usually expressed in units of kJ/mol. The molar enthalpy change can be positive (endothermic) if heat is absorbed or negative (exothermic) if heat is released during the reaction.
the breaking down of elements into atoms. it is the energy required when 1 mole of a substance completely decomposes into its gaseous atoms i.e endothermic reaction, delta H is +ve meaning breaking bonds
The enthalpy change for the dissolution of one mole of ammonium nitrate is approximately +26.7 kJ/mol. This value represents the energy absorbed during the process of dissolving ammonium nitrate in water.
Enthalpy change of neutralisation is defined as the enthalpy change of a reaction where one mole of hydrogen ions reacts with one mole of hydroxide ions to form one mole of water under standard conditions of 1 atm, 298K (25 degree Celsius) and in the solutions containing 1 mol per dm3.