Silver nitrate and lead nitrate do not react, so there would be no precipitate.
When lead nitrate is mixed with sodium iodide, a solid precipitate of lead iodide is formed along with sodium nitrate. This reaction is a double displacement reaction where the cations of the two compounds switch partners to form the products. Lead iodide is a yellow precipitate that can be easily observed in the reaction mixture.
The compound precipitate formed when potassium iodide is added to a solution of lead nitrate is lead iodide, which is a yellow precipitate. This reaction is a double displacement reaction where the potassium ion and nitrate ion switch partners to form potassium nitrate and lead iodide.
A precipitate of Lead iodide and Potassium nitrate are formed
Some examples of simple precipitation reactions include mixing silver nitrate with sodium chloride to form silver chloride precipitate, mixing lead nitrate with potassium iodide to form lead iodide precipitate, and mixing barium chloride with sodium sulfate to form barium sulfate precipitate.
When sodium chromate and lead nitrate are mixed, a yellow precipitate of lead chromate is formed, along with sodium nitrate remaining in solution.
i have know idea how to do chemical equasions and my science teacher has not taught me anything on it. Are these equasions right? Lead + Silver nitrate -------- Silver + Lead nitrate Pb(s) AgNo3 Ag (s) Pb (No3)2
When silver nitrate is mixed with lead, a solid white precipitate of lead(II) nitrate is formed along with silver metal. This reaction is a displacement reaction where the more reactive silver displaces the less reactive lead from the compound.
The possible reactants could be sodium thiosulfate and silver nitrate, forming a yellow precipitate of silver sulfide. Another possibility is mixing potassium chromate and lead(II) nitrate, forming a yellow precipitate of lead chromate.
One way to differentiate between lead nitrate and silver nitrate is to add a few drops of dilute hydrochloric acid to each compound. Lead nitrate will produce a white precipitate of lead chloride, while silver nitrate will produce a white precipitate of silver chloride. Another method is to observe the color of the compounds - silver nitrate is white, while lead nitrate is colorless.
When lead nitrate is mixed with sodium iodide, a solid precipitate of lead iodide is formed along with sodium nitrate. This reaction is a double displacement reaction where the cations of the two compounds switch partners to form the products. Lead iodide is a yellow precipitate that can be easily observed in the reaction mixture.
The compound precipitate formed when potassium iodide is added to a solution of lead nitrate is lead iodide, which is a yellow precipitate. This reaction is a double displacement reaction where the potassium ion and nitrate ion switch partners to form potassium nitrate and lead iodide.
A precipitate of Lead iodide and Potassium nitrate are formed
In the reaction: Lead (Ⅱ) Nitrate + Potassium Iodide → Potassium Nitrate + Lead (Ⅱ) Iodide.. all nitrates are soluble and lead(ii)iodide is insoluble.
Some examples of simple precipitation reactions include mixing silver nitrate with sodium chloride to form silver chloride precipitate, mixing lead nitrate with potassium iodide to form lead iodide precipitate, and mixing barium chloride with sodium sulfate to form barium sulfate precipitate.
When sodium chromate and lead nitrate are mixed, a yellow precipitate of lead chromate is formed, along with sodium nitrate remaining in solution.
You can separate lead nitrate from a lead nitrate solution by adding a soluble salt like sodium chloride, which will cause lead chloride to precipitate out as a solid. The lead chloride can then be filtered out from the solution, leaving you with the lead nitrate solution separated from the lead chloride.
Pb2+ + 2 NO3- + 2H+ + 2I- -> PbI2 (s) + 2HNO3 (aq)