This could be a catch question! NaBr is ionic and there are no molecules. The inter ionic forces are electrostatic.
The strongest intermolecular force present in hydrogen bromide (HBr) is dipole-dipole interaction.
The strongest intermolecular force between two molecules of water in ice is hydrogen bonding.
To determine the strongest intermolecular force in a substance, you need to consider the types of molecules present. Look for hydrogen bonding, which is the strongest intermolecular force. If hydrogen bonding is not present, then consider dipole-dipole interactions and London dispersion forces in determining the strength of intermolecular forces.
The strongest intermolecular force in CCl2H2 (dichloromethane) is dipole-dipole interactions. This is because dichloromethane has polar bonds due to the difference in electronegativity between carbon and chlorine, resulting in a permanent dipole moment.
The strongest intermolecular force between hydrogen chloride molecules is dipole-dipole interactions. Hydrogen chloride is a polar molecule with a permanent dipole moment, so the positive hydrogen end of one molecule is attracted to the negative chlorine end of another molecule, leading to dipole-dipole interactions.
The strongest intermolecular force present in hydrogen bromide (HBr) is dipole-dipole interaction.
The strongest intermolecular force between two molecules of water in ice is hydrogen bonding.
To determine the strongest intermolecular force in a substance, you need to consider the types of molecules present. Look for hydrogen bonding, which is the strongest intermolecular force. If hydrogen bonding is not present, then consider dipole-dipole interactions and London dispersion forces in determining the strength of intermolecular forces.
The strongest intermolecular force in CCl2H2 (dichloromethane) is dipole-dipole interactions. This is because dichloromethane has polar bonds due to the difference in electronegativity between carbon and chlorine, resulting in a permanent dipole moment.
Hydrogen bonds can be considered as the strongest intermolecular attraction forces.
The strongest intermolecular force between hydrogen chloride molecules is dipole-dipole interactions. Hydrogen chloride is a polar molecule with a permanent dipole moment, so the positive hydrogen end of one molecule is attracted to the negative chlorine end of another molecule, leading to dipole-dipole interactions.
hydrogen bonding
Hydrogen bonding, which is the strongest of the intermolecular forces.
Ionic bonding is the strongest type of intermolecular force and is responsible for the high melting points of solid salts. In ionic bonding, positive and negative ions are held together by strong electrostatic forces of attraction.
Water (H2O) has stronger intermolecular forces than ammonia (NH3) due to hydrogen bonding in water molecules. Hydrogen bonding is a type of intermolecular force that is stronger than the dipole-dipole interactions present in ammonia molecules.
The strongest intermolecular force in ammonia is hydrogen bonding. This occurs because the nitrogen atom in ammonia can form a hydrogen bond with a hydrogen atom from another ammonia molecule, resulting in a relatively strong attraction between the molecules.
Not particlarly it is weaker than the electrostaic attraction between ions but is the strongest of the intermolecular forces.