attractive force present between ammonia ions repulsive force also exist but not at high rate
The predominant intermolecular force in ammonia (NH3) is hydrogen bonding. Hydrogen bonding occurs between the hydrogen atom of one ammonia molecule and the lone pair of electrons on the nitrogen atom of another ammonia molecule. This results in relatively strong interactions between the molecules.
Correct answers from Mastering Chemistry: NH3 - hydrogen bonding CH4 - Dispersion forces NF3 - dipole-dipole
Dipole forces and London forces are present between these molecules.
NH3 exhibits hydrogen bonding in addition to dispersion forces. This significantly increases the intermolecular force, and raises the boiling point. PH3 does not exhibit hydrogen bonding and the dominant intermolecular force holding these molecules together is dispersion forces. (Dispersion forces also known as Van Der Waal Force)
AlH3 alane is a covalent solid and is a giant molecule, so no intermolecular forces will be present. Planar AlH3 molecules have been isolated at very low temperatures. AlH3 molecules would be predicted to have no dipole moment due to their shape. The only intermolecular forces would be London dispersion forces.
The strongest intermolecular force present in hydrogen bromide (HBr) is dipole-dipole interaction.
Water (H2O) has stronger intermolecular forces than ammonia (NH3) due to hydrogen bonding in water molecules. Hydrogen bonding is a type of intermolecular force that is stronger than the dipole-dipole interactions present in ammonia molecules.
To determine the strongest intermolecular force in a substance, you need to consider the types of molecules present. Look for hydrogen bonding, which is the strongest intermolecular force. If hydrogen bonding is not present, then consider dipole-dipole interactions and London dispersion forces in determining the strength of intermolecular forces.
The strongest intermolecular force between two molecules of water in ice is hydrogen bonding.
The strongest intermolecular force present in ibuprofen is dipole-dipole interactions. Ibuprofen contains polar covalent bonds due to the differences in electronegativity between the atoms, leading to the formation of partial positive and negative charges. These partial charges allow ibuprofen molecules to attract each other through dipole-dipole interactions.
The strongest intermolecular force in CCl2H2 (dichloromethane) is dipole-dipole interactions. This is because dichloromethane has polar bonds due to the difference in electronegativity between carbon and chlorine, resulting in a permanent dipole moment.
Because there is the present of intermolecular force and intramolecular force
The predominant intermolecular force in ammonia (NH3) is hydrogen bonding. Hydrogen bonding occurs between the hydrogen atom of one ammonia molecule and the lone pair of electrons on the nitrogen atom of another ammonia molecule. This results in relatively strong interactions between the molecules.
Sugar has stronger intermolecular forces, such as hydrogen bonding, due to its molecular structure that allows for more interactions between its molecules compared to ammonia. Ammonia, on the other hand, primarily exhibits weaker dipole-dipole interactions.
The strongest intermolecular force between hydrogen chloride molecules is dipole-dipole interactions. Hydrogen chloride is a polar molecule with a permanent dipole moment, so the positive hydrogen end of one molecule is attracted to the negative chlorine end of another molecule, leading to dipole-dipole interactions.
hydrogen bonding
Hydrogen bonding, which is the strongest of the intermolecular forces.