AlH3 alane is a covalent solid and is a giant molecule, so no intermolecular forces will be present. Planar AlH3 molecules have been isolated at very low temperatures. AlH3 molecules would be predicted to have no dipole moment due to their shape. The only intermolecular forces would be London dispersion forces.
The intermolecular forces present in CH3CH2OCH2CH3 are London dispersion forces, dipole-dipole interactions, and possibly hydrogen bonding between the oxygen atom and hydrogen atoms in neighboring molecules.
The force between SO2 molecules is a type of intermolecular force known as London dispersion forces. These forces are caused by temporary fluctuations in electron distribution within molecules, leading to weak attractions between neighboring molecules.
An ion-dipole bond is a type of intermolecular force that forms between an ion and a polar molecule. The positive or negative charge on the ion interacts with the partial positive or negative charge on the polar molecule, resulting in attraction between the two species. This type of bond is important in solutions where ions are present alongside polar molecules.
In a single molecule of CH4 you would have intramolecular forces that are covalent bonds. The intermolecular forces that exist between molecules of CH4 are called dispersion forces. These forces are the only intermolecular forces that occur between non-polar molecules.
Acetone exhibits dipole-dipole interactions as its dominant intermolecular force. This is due to the polar nature of the acetone molecule, which contains a carbonyl group. Additionally, acetone can also experience weak van der Waals forces such as London dispersion forces.
London forces are present in chlorine molecules.
The type of intermolecular force present in KOH is hydrogen bonding. Hydrogen bonding occurs between the hydrogen atom of one molecule and the oxygen atom of another molecule when hydrogen is bonded to a highly electronegative atom such as oxygen.
Dimethyl ether exhibits dipole-dipole interactions as the main intermolecular force. It also experiences weak London dispersion forces.
The type of intermolecular force present in Br2 is London dispersion forces. These forces are the weakest of the intermolecular forces and result from temporary fluctuations in electron distribution around the molecule, leading to a temporary dipole moment.
Intramolecular forces are not intermolecular forces !
Water (H2O) has stronger intermolecular forces than ammonia (NH3) due to hydrogen bonding in water molecules. Hydrogen bonding is a type of intermolecular force that is stronger than the dipole-dipole interactions present in ammonia molecules.
Hydrogens Bonds
Covalent bonds
BeF2 is a covalent compound composed of beryllium and fluoride ions. The primary intermolecular force present in BeF2 is London dispersion forces, which exist between the nonpolar BeF2 molecules.
The type of intermolecular force present in H2S is dipole-dipole forces. H2S molecule has a significant dipole moment due to the difference in electronegativity between sulfur and hydrogen atoms, resulting in the attraction between the δ+ hydrogen and δ- sulfur atoms of neighboring molecules.
Dispersion forces, also known as London dispersion forces, are present in all molecules and atoms. These forces are the weakest type of intermolecular interaction and arise from temporary fluctuations in electron distribution within a molecule or atom.
London dispersion forces (instantaneous induced dipole-dipole interactions.)