Because NH3 has a much larger difference in its electronegativity values than of Cl2. Cl2 have a 0 difference which causes it to have weaker forces of attraction.
Water (H2O) has stronger intermolecular forces than ammonia (NH3) due to hydrogen bonding in water molecules. Hydrogen bonding is a type of intermolecular force that is stronger than the dipole-dipole interactions present in ammonia molecules.
The most significant intermolecular force in NH3 is hydrogen bonding. This occurs due to the large electronegativity difference between nitrogen and hydrogen, creating a strong dipole-dipole interaction.
The most significant intermolecular force in NH3 is hydrogen bonding. This is due to the presence of a hydrogen atom bonded to a highly electronegative nitrogen atom, leading to a strong dipole-dipole interaction with neighboring ammonia molecules.
NH3 molecules exhibit hydrogen bonding, which involves a strong dipole-dipole interaction between the partially positive hydrogen of one NH3 molecule and the partially negative nitrogen of another NH3 molecule. Additionally, NH3 molecules also exhibit van der Waals forces such as dispersion forces and dipole-induced dipole interactions.
In NH3 (ammonia), the intermolecular forces present are hydrogen bonding, which occurs between the hydrogen atom on one NH3 molecule and the lone pair of electrons on the nitrogen atom of another NH3 molecule. This is a type of dipole-dipole attraction.
BCl3 and NH3 would exhibit dipole-dipole intermolecular forces, as they have polar bonds. CF4, CO2, and Cl2 would not exhibit dipole-dipole forces, as they are nonpolar molecules.
Water (H2O) has stronger intermolecular forces than ammonia (NH3) due to hydrogen bonding in water molecules. Hydrogen bonding is a type of intermolecular force that is stronger than the dipole-dipole interactions present in ammonia molecules.
The most significant intermolecular force in NH3 is hydrogen bonding. This occurs due to the large electronegativity difference between nitrogen and hydrogen, creating a strong dipole-dipole interaction.
The most significant intermolecular force in NH3 is hydrogen bonding. This is due to the presence of a hydrogen atom bonded to a highly electronegative nitrogen atom, leading to a strong dipole-dipole interaction with neighboring ammonia molecules.
NH3 molecules exhibit hydrogen bonding, which involves a strong dipole-dipole interaction between the partially positive hydrogen of one NH3 molecule and the partially negative nitrogen of another NH3 molecule. Additionally, NH3 molecules also exhibit van der Waals forces such as dispersion forces and dipole-induced dipole interactions.
In NH3 (ammonia), the intermolecular forces present are hydrogen bonding, which occurs between the hydrogen atom on one NH3 molecule and the lone pair of electrons on the nitrogen atom of another NH3 molecule. This is a type of dipole-dipole attraction.
The pair of molecules with the strongest dipole-dipole interactions would be NH3-NH3 because ammonia (NH3) is a polar molecule with a significant dipole moment, leading to stronger attractions compared to the other options listed.
Correct answers from Mastering Chemistry: NH3 - hydrogen bonding CH4 - Dispersion forces NF3 - dipole-dipole
NH3 exhibits hydrogen bonding in addition to dispersion forces. This significantly increases the intermolecular force, and raises the boiling point. PH3 does not exhibit hydrogen bonding and the dominant intermolecular force holding these molecules together is dispersion forces. (Dispersion forces also known as Van Der Waal Force)
Among these NH3 is the weakest base so strongest conjugate acid would be NH4+ ion.
NH3 (ammonia) is a liquid at room temperature due to intermolecular hydrogen bonding that holds ammonia molecules together. PH3 (phosphine) is a gas at room temperature because its intermolecular forces are weaker, resulting in lower boiling point compared to NH3.
CO2 and SF4 exhibit resonance because they both have multiple resonance structures due to the presence of multiple double bonds. BH3 and NH3 do not exhibit resonance as they are both stable molecules with no additional resonance structures.