See the Web Links to the left for a table of the vapor pressure of water at various temperatures.
The vapor pressure of water at 10 degrees Celsius is lower than at 50 degrees Celsius. As temperature increases, so does the vapor pressure of water because more water molecules have enough energy to escape into the gas phase.
The vapor pressure of water at 105 degrees Celsius is approximately 101.3 kilopascals (kPa).
The temperature of the water is 100 degrees celsius.
The vapor pressure of water at 70 degrees Celsius is approximately 23.76 kPa. To find the partial pressure of water vapor in the mixture, subtract this vapor pressure from the total pressure of 89.9 kPa. Therefore, the partial pressure of water vapor would be 89.9 kPa - 23.76 kPa = 66.14 kPa.
Chloroform has a normal boiling point of 61.2 degrees Celsius, which is lower than the boiling point of water. This means that chloroform will have a higher vapor pressure than water at 100 degrees Celsius, where water is at its boiling point but chloroform is not.
The vapor pressure of water at 10 degrees Celsius is lower than at 50 degrees Celsius. As temperature increases, so does the vapor pressure of water because more water molecules have enough energy to escape into the gas phase.
The vapor pressure of water at 105 degrees Celsius is approximately 101.3 kilopascals (kPa).
The vapor pressure of pure water at 25 degrees Celsius is 23.8 torr.
Vapor pressure of water at 10 0C is less than that at 50 0C because, like gas pressure, as temperature rises, the kinetic energy of particles increases, thus increasing pressure. So the pressure of water vapor at 50 0C has more vapor pressure than at 10 0C.
0.6 kPa
The vapor pressure of water at 65 degrees Celsius is approximately 170.4 mmHg.
Yes. As long as the pressure is below atmospheric pressure.
The vapor pressure of water at 72 degrees Celsius is approximately 28.1 mmHg.
The temperature of the water is 100 degrees celsius.
The vapor pressure of water at 70 degrees Celsius is approximately 23.76 kPa. To find the partial pressure of water vapor in the mixture, subtract this vapor pressure from the total pressure of 89.9 kPa. Therefore, the partial pressure of water vapor would be 89.9 kPa - 23.76 kPa = 66.14 kPa.
At a vapor pressure of 70 kPa, the temperature of water would be approximately 63.5 degrees Celsius. This temperature corresponds to the boiling point of water at that specific pressure.
At absolute zero pressure, water will boil at 0 degrees Celsius. This is because at zero pressure, water can boil into vapor without needing to reach its normal boiling point of 100 degrees Celsius under standard pressure conditions.