4 NH3 + 5 O2 ---> 4 NO + 6 H2O
moles NH3 used = 36.3 g x 1 mole/17 g = 2.14 moles
moles O2 needed = 2.14 moles (note a 1mole to 1mole ratio of O2 to NH3 in balanced equation)
grams O2 needed = 2.14 moles x 32g/mol = 68.48 grams needed
The balanced chemical equation for the reaction is: 4Fe + 3O2 -> 2Fe2O3 From the equation, it can be seen that 3 moles of O2 are required to react with 4 moles of Fe. Therefore, to determine the grams of O2 required to react with 100 g Fe, you would need to use stoichiometry to find the answer.
Magnesium will not react with nitrogen gas at room temperature and pressure due to the high activation energy required for the reaction. It is possible for magnesium to react with nitrogen under extreme conditions, such as high temperatures or pressures.
In the reaction 3H2 + N2 --> 2NH3, the ratio of H2 to N2 is 3:1. To calculate the amount of N2 required, we need to first convert the mass of H2 to moles, then use the ratio to find the moles of N2 needed, and finally convert the moles of N2 to grams. After the calculation, we find that 2.79 g of H2 requires 3.31 g of N2 to react completely.
If we have 150 nitrogen molecules, we would need an equal number of hydrogen molecules to react with them according to the balanced reaction equation for the formation of ammonia: N2 + 3H2 → 2NH3 Therefore, we would need 150 hydrogen molecules to react with 150 nitrogen molecules.
For every 1 gram of zinc, 3.88 grams of iodine are required to react. So in this case, with 4.2 grams of zinc, the amount of iodine needed would be (4.2 grams zinc) * (3.88 grams iodine / 1 gram zinc) = 16.296 grams of iodine.
To find the grams of nitrogen dioxide needed, first calculate the moles of nitrogen monoxide using Avogadro's number. Then, use the balanced chemical equation to determine the moles of nitrogen dioxide required. Finally, convert moles to grams using the molar mass of nitrogen dioxide.
To form ammonia (NH3) from nitrogen (N2) and hydrogen (H2), the balanced chemical equation is N2 + 3H2 → 2NH3. This means that for every mole of nitrogen, 3 moles of hydrogen are required. Given that nitrogen is limiting in this case, all 70 grams of nitrogen will react with 210 grams (3 times 70) of hydrogen to form 70 grams of ammonia. This reaction will consume all the hydrogen, leaving no grams of hydrogen leftover.
160...cant quite grasp HOW though
The balanced chemical equation for the reaction is: 4Fe + 3O2 -> 2Fe2O3 From the equation, it can be seen that 3 moles of O2 are required to react with 4 moles of Fe. Therefore, to determine the grams of O2 required to react with 100 g Fe, you would need to use stoichiometry to find the answer.
Magnesium will not react with nitrogen gas at room temperature and pressure due to the high activation energy required for the reaction. It is possible for magnesium to react with nitrogen under extreme conditions, such as high temperatures or pressures.
The answer is 152 g oxygen.
In the reaction 3H2 + N2 --> 2NH3, the ratio of H2 to N2 is 3:1. To calculate the amount of N2 required, we need to first convert the mass of H2 to moles, then use the ratio to find the moles of N2 needed, and finally convert the moles of N2 to grams. After the calculation, we find that 2.79 g of H2 requires 3.31 g of N2 to react completely.
If we have 150 nitrogen molecules, we would need an equal number of hydrogen molecules to react with them according to the balanced reaction equation for the formation of ammonia: N2 + 3H2 → 2NH3 Therefore, we would need 150 hydrogen molecules to react with 150 nitrogen molecules.
Chlorine is the element most likely to react with aluminum, forming aluminum chloride through a chemical reaction.
2
Copper does not react with nitrogen under normal conditions. However, at very high temperatures and pressures, copper can react with nitrogen to form copper nitride.
For every 1 gram of zinc, 3.88 grams of iodine are required to react. So in this case, with 4.2 grams of zinc, the amount of iodine needed would be (4.2 grams zinc) * (3.88 grams iodine / 1 gram zinc) = 16.296 grams of iodine.