The oxidation of 3,3-dimethyl-2-butanol would yield a ketone, specifically 3,3-dimethyl-2-butanone. This reaction involves the conversion of the alcohol functional group to a ketone via loss of hydrogen atoms.
One possible pair of substances that could be involved in an oxidation-reduction reaction to form ions is magnesium and oxygen. In this reaction, magnesium would undergo oxidation to form Mg2+ ions, while oxygen would undergo reduction to form O2- ions.
You would get a linear curve because the oxidation state of elements in group 1 increases by one as you move from one element to the next, due to the loss of one electron in their outermost shell. Thus, the plot of oxidation state against atomic number for group 1 elements would result in a straight line.
The reaction between concentrated nitric acid (HNO3) and galactose (C6H12O6) would result in the oxidation of galactose to formic acid and other products. The specific chemical equation would be complex and involve multiple steps and intermediate compounds.
The oxidation number of iron in ferric oxide (Fe2O3) is +3. This is because oxygen typically has an oxidation number of -2, and since there are 3 oxygen atoms in Fe2O3, the total oxidation number from oxygen is -6. In order for the compound to be neutral, the oxidation number of iron must be +3 to balance out the -6 from the oxygen atoms.
The compound with the highest oxidation number would be an oxide of fluorine, such as OF₂. In this compound, the oxidation state of fluorine is +2, which is the highest oxidation state observed for fluorine.
The products would be the end result, or whatever you make.
One possible pair of substances that could be involved in an oxidation-reduction reaction to form ions is magnesium and oxygen. In this reaction, magnesium would undergo oxidation to form Mg2+ ions, while oxygen would undergo reduction to form O2- ions.
You would get a linear curve because the oxidation state of elements in group 1 increases by one as you move from one element to the next, due to the loss of one electron in their outermost shell. Thus, the plot of oxidation state against atomic number for group 1 elements would result in a straight line.
'Oxidation number' and oxidation state are often used interchangeably. Oxidation state is a formal way of determining the degree of oxidation of an atom or ion or molecule; for ions the oxidation number is equal to the ionic charge. In non ionic compounds the most electronegative element is assumed to "own" the electrons. So in say InP which is a semiconductor and not ionic, the oxidation state of indium is +III and P is -III. Oxidation number is a convention used in complexes. Ligands are removed from the ion with all bonding electrons. Often the oxidation number and oxidation state have the same values but calculating the the oxidation number of N in ammonia, H is removed as hydride ion, H- you get the strange looking result of nitrogen with an oxidation number of +3. In contrast the oxidation states of N and H would be calculated as -III and +1
Mechanical weathering would result in the physical break down of the rock into smaller pieces without changing its chemical composition. Chemical weathering would alter the mineral composition of the rock through processes such as hydration, oxidation, or dissolution, producing different minerals as products.
No, oxygen will never have a -3 oxidation number. If it had a -3 oxidation number, it would not have a full octet. It would have a +1 charge, therefore making it not happy.
'Oxidation number' and oxidation state are often used interchangeably. Oxidation state is a formal way of determining the degree of oxidation of an atom or ion or molecule; for ions the oxidation number is equal to the ionic charge. In non ionic compounds the most electronegative element is assumed to "own" the electrons. So in say InP which is a semiconductor and not ionic, the oxidation state of indium is +III and P is -III. Oxidation number is a convention used in complexes. Ligands are removed from the ion with all bonding electrons. Often the oxidation number and oxidation state have the same values but calculating the the oxidation number of N in ammonia, H is removed as hydride ion, H- you get the strange looking result of nitrogen with an oxidation number of +3. In contrast the oxidation states of N and H would be calculated as -III and +1
The reaction between concentrated nitric acid (HNO3) and galactose (C6H12O6) would result in the oxidation of galactose to formic acid and other products. The specific chemical equation would be complex and involve multiple steps and intermediate compounds.
The compound with the highest oxidation number would be an oxide of fluorine, such as OF₂. In this compound, the oxidation state of fluorine is +2, which is the highest oxidation state observed for fluorine.
The oxidation number of iron in ferric oxide (Fe2O3) is +3. This is because oxygen typically has an oxidation number of -2, and since there are 3 oxygen atoms in Fe2O3, the total oxidation number from oxygen is -6. In order for the compound to be neutral, the oxidation number of iron must be +3 to balance out the -6 from the oxygen atoms.
If you are referring to the nitrate ion, NO3-, the oxidation number of oxygen would be O2- and nitrogen would be N5+. If you are talking about nitrogen trioxide NO3, the oxidation number of oxygen would be O2- and nitrogen would be N6+. Edit: Nitrogen trioxide does not exist in its free state.
Corrosion commonly caused to metals and non metals in the periodic table xxx