A double displacement reaction.
When lead nitrate is mixed with sodium iodide, a solid precipitate of lead iodide is formed along with sodium nitrate. This reaction is a double displacement reaction where the cations of the two compounds switch partners to form the products. Lead iodide is a yellow precipitate that can be easily observed in the reaction mixture.
Lead(II) nitrate and sodium iodide will yield lead(II) iodide and sodium nitrate. This is a double displacement reaction, where the cations and anions switch partners resulting in the formation of two new compounds.
Lead iodide is prepared from lead nitrate because lead nitrate contains lead ions and nitrate ions that can react with iodide ions to form lead iodide. This reaction allows for the precipitation of lead iodide, which can then be isolated and collected.
Nickel and zinc chloride: Nickel chloride and zinc Chlorine and sodium: Sodium chloride Potassium nitrate and lead iodide: Potassium iodide and lead nitrate
The filtrate of lead nitrate and sodium iodide would contain soluble sodium nitrate and insoluble lead iodide. Lead iodide is a yellow solid that precipitates out of the solution, while sodium nitrate remains in the filtrate as it is soluble in water.
When lead nitrate is mixed with sodium iodide, a solid precipitate of lead iodide is formed along with sodium nitrate. This reaction is a double displacement reaction where the cations of the two compounds switch partners to form the products. Lead iodide is a yellow precipitate that can be easily observed in the reaction mixture.
Lead(II) nitrate and sodium iodide will yield lead(II) iodide and sodium nitrate. This is a double displacement reaction, where the cations and anions switch partners resulting in the formation of two new compounds.
When reactants lead(II) nitrate and sodium iodide are combined, a double displacement reaction occurs. Lead(II) iodide (insoluble in water) and sodium nitrate are formed, leading to a white precipitate of lead(II) iodide and a solution of sodium nitrate.
Lead iodide is prepared from lead nitrate because lead nitrate contains lead ions and nitrate ions that can react with iodide ions to form lead iodide. This reaction allows for the precipitation of lead iodide, which can then be isolated and collected.
Aqueous lead nitrate plus aqueous sodium iodide produce solid lead iodide and aqueous sodium nitrate.
Nickel and zinc chloride: Nickel chloride and zinc Chlorine and sodium: Sodium chloride Potassium nitrate and lead iodide: Potassium iodide and lead nitrate
The filtrate of lead nitrate and sodium iodide would contain soluble sodium nitrate and insoluble lead iodide. Lead iodide is a yellow solid that precipitates out of the solution, while sodium nitrate remains in the filtrate as it is soluble in water.
The formula for lead iodide is PbI2 and the formula for sodium nitrate is NaNO3.
Lead(II) nitrate and sodium iodide undergo a double displacement reaction to form sodium nitrate and lead(II) iodide, which is a slightly soluble yellow solid. The balanced chemical equation for this reaction is: Pb(NO3)2(aq) + 2NaI(aq) -> 2NaNO3(aq) + PbI2(s)
Sodium iodide and lead nitrate react to form sodium nitrate and lead iodide. This is a double displacement reaction where the positive ions in the two compounds switch places. Lead iodide is insoluble and will precipitate out of the solution.
When potassium iodide reacts with lead nitrate, a double displacement reaction occurs. The potassium ion and the lead ion switch places to form potassium nitrate and lead iodide. This reaction results in the formation of a yellow precipitate of lead iodide.
When solutions of lead nitrate and potassium iodide are mixed, a yellow precipitate of lead iodide is formed. This reaction is a double displacement reaction where the lead from lead nitrate reacts with the iodide from potassium iodide to form the insoluble lead iodide.