Hco3- => h2co3
The Bronsted-Lowry definition describes acids as being proton (H+) donators and bases as being proton acceptors. So the answer would be C, because the carbonate anion is accepting a proton (H+ cation) to become the HCO3-
Phosphate ion (PO4 3-) acts as a base in the Bronsted-Lowry acid-base theory by accepting a proton (H+).
The conjugated acid of HCO3- is: H2CO3, carbonic acid.Conjugated pairs of acid and base always differ ONE (1) proton (H+): The acid WITH and the base WITHOUT it.So, on the other hand the conjugated base of HCO3- is: CO32-, carbonate.
NH3 acts as a Bronsted-Lowry base because it can accept a proton (H+) to form the NH4+ ion. In contrast, NH3 does not produce hydroxide ions (OH-) in solution, which is a defining characteristic of an Arrhenius base.
The conjugate base of CO32- is HCO3- (bicarbonate ion), which is formed by removing one proton from CO32-.
The Bronsted-Lowry definition describes acids as being proton (H+) donators and bases as being proton acceptors. So the answer would be C, because the carbonate anion is accepting a proton (H+ cation) to become the HCO3-
Phosphate ion (PO4 3-) acts as a base in the Bronsted-Lowry acid-base theory by accepting a proton (H+).
The conjugated acid of HCO3- is: H2CO3, carbonic acid.Conjugated pairs of acid and base always differ ONE (1) proton (H+): The acid WITH and the base WITHOUT it.So, on the other hand the conjugated base of HCO3- is: CO32-, carbonate.
Bronsted Base
It is a Bronsted base.
Dissolving formic acid in water the formiate ion formed is the conjugate base of the acid.
NH3 acts as a Bronsted-Lowry base because it can accept a proton (H+) to form the NH4+ ion. In contrast, NH3 does not produce hydroxide ions (OH-) in solution, which is a defining characteristic of an Arrhenius base.
A Bronsted-Lowry base is a proton acceptor.
HCO3 acts as a Brønsted-Lowry base in the bicarbonate buffer system, which consists of the equilibrium between carbonic acid (H2CO3) and bicarbonate ion (HCO3-) in aqueous solution. In this system, HCO3- accepts a proton (H+) to form carbonic acid (H2CO3).
The conjugate base of CO32- is HCO3- (bicarbonate ion), which is formed by removing one proton from CO32-.
A Bronsted-Lowery base accepts H+ ions
Conjugate acids and bases belong to the Bronsted-Lowry theory of acids and bases. In this theory, an acid donates a proton (H+) and a base accepts a proton. A conjugate acid is formed when a base accepts a proton, and a conjugate base is formed when an acid donates a proton.