+/- 1 (5,7) are the listed oxidation states, but many of these elements that have many electron shells can reach deep into their valance shells for greater oxidation states due to a possibility of electron shielding.
The oxidation number of Iodine (I) in HIO2 is +3. This is because the sum of the oxidation numbers in a neutral molecule must add up to zero, and since hydrogen is typically assigned an oxidation number of +1, and oxygen is typically assigned an oxidation number of -2, the oxidation number of Iodine is +3.
The oxidation number of a free element is zero. However, the oxidation number of elements (e.g. iodine) in compounds will not be zero. The actual oxidation number/state can be deduced if the chemical formula of the compound is given.
The oxidation state of nitrogen (N) in NH4+ is -3. Nitrogen usually has a -3 oxidation state in ammonium ion (NH4+) as hydrogen is typically considered to have +1 oxidation state and there are four hydrogen atoms bonded to nitrogen in NH4+.
Iodine is the halogen that can occur in nature in a positive oxidation state. It can form various compounds where it exhibits oxidation states from -1 to +7, with +1, +3, +5, and +7 being the most common.
Chromium has four oxidation states: 2, 3, 4, and 6.Iodine has one, and it's -1.There will be a iodide for each oxidation state of chromium.CrI2 Chromium (II) iodideCrI3 Chromium (III) iodideCrI4 Chromium (IV) iodideCrI6 Chromium (VI) iodide
The oxidation number of Iodine (I) in HIO2 is +3. This is because the sum of the oxidation numbers in a neutral molecule must add up to zero, and since hydrogen is typically assigned an oxidation number of +1, and oxygen is typically assigned an oxidation number of -2, the oxidation number of Iodine is +3.
The formula for iron (III) iodide is FeI3, where iron is in the +3 oxidation state and iodine is in the -1 oxidation state.
The oxidation number of a free element is zero. However, the oxidation number of elements (e.g. iodine) in compounds will not be zero. The actual oxidation number/state can be deduced if the chemical formula of the compound is given.
The oxidation state of nitrogen (N) in NH4+ is -3. Nitrogen usually has a -3 oxidation state in ammonium ion (NH4+) as hydrogen is typically considered to have +1 oxidation state and there are four hydrogen atoms bonded to nitrogen in NH4+.
Iodine is the halogen that can occur in nature in a positive oxidation state. It can form various compounds where it exhibits oxidation states from -1 to +7, with +1, +3, +5, and +7 being the most common.
Chromium has four oxidation states: 2, 3, 4, and 6.Iodine has one, and it's -1.There will be a iodide for each oxidation state of chromium.CrI2 Chromium (II) iodideCrI3 Chromium (III) iodideCrI4 Chromium (IV) iodideCrI6 Chromium (VI) iodide
The oxidation state is +3.
The oxidation number for iodine in IF is -1. Fluorine always has an oxidation number of -1 in compounds.
The oxidation number of iodine in the iodate ion (IO3-) is +5. Each oxygen atom has an oxidation number of -2, giving a total of -6 for the three oxygen atoms. To neutralize the charge of -1 on the ion, the oxidation number of iodine must be +5.
The oxidation state of Boron in BO3^-3 is +3. This is because the overall charge of the ion is -3, and each oxygen atom has an oxidation state of -2. Hence, the Boron atom must have an oxidation state of +3 to balance the charges.
The oxidation state of N in NH4+ is -3. Nitrogen typically has an oxidation state of -3 when it is in the ammonium ion (NH4+).
The oxidation state of Fe in FeCl3 is +3. Each Cl atom has an oxidation state of -1, and since there are three Cl atoms in FeCl3, the overall charge from the Cl atoms is -3. This makes the Fe atom's oxidation state +3 to balance the charges.